Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emissions-Free Cars Get Closer

12.01.2015

Paper characterizes essential reaction for renewable energy fuel cells

A University of Delaware research team is considering the important question of what it will take to create an affordable emissions-free car.


University of Delaware

New findings could help create alternative electrocatalysts for vehicles powered by hydrogen fuel cells, such as this bus at the University of Delaware.

The question, an issue of engineering and economics, is being studied by a team led by Yushan Yan, Distinguished Professor of Engineering.

Hydrogen fuel cells may be the best option for powering zero-emission vehicles: Toyota has just introduced a hydrogen-powered car in Japan and will make them available in the United States in 2015.

But these fuel cells require an electrocatalyst — a platinum surface — to increase the reaction rate, and the cost of the precious metal makes it hard for hydrogen fuel cells to compete economically with the internal combustion engine.

Yan’s group has been working on a new type of fuel cells, using alkaline polymers that could employ a number of non-precious metal catalysts such as nickel, which is a thousand times cheaper than platinum.

But using alkaline polymers leads to a high pH, and researchers have discovered that the reaction goes about 100 times more slowly in this environment that it does in an acid. In order to create less expensive electrocatalysts that work well in an alkaline environment, researchers have to know exactly how the reaction unfolds, and what its most essential mechanisms are.

A paper by Yan’s research group, published in the Jan. 8 issue of the multidisciplinary journal Nature Communications, helps pin down the basic mechanisms of the fuel-cell reaction on platinum, which will help researchers create alternative electrocatalysts.

After extensive testing, the team found that the hydrogen binding energy (the amount of energy released when a hydrogen molecule adheres to a metal surface) was the most important factor predicting the rate of the reaction — information essential to researchers designing new catalyst materials.

The paper was authored by the laboratory’s recent postdoctoral researchers Wenchao Sheng and Minrui Gao; current postdoctoral student Zhongbin Zhuang and current doctoral candidate Jie Zheng, along with Yan and Columbia University’s Jingguang Chen.

The paper, “Correlating Hydrogen Oxidation and Evolution Activity on Platinum at Different pH with Measured Hydrogen Binding Energy,” can be found here.

Contact Information
Andrea Boyle Tippett
Director, External Relations
aboyle@udel.edu
Phone: 302-831-1421
Mobile: 302-690-5138

Andrea Boyle Tippett | newswise
Further information:
http://www.udel.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>