Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electromobility – an important topic for the future

13.02.2012
The German government wants one million electric cars to be on Germany’s roads by 2020.
But for that to happen, more research into electromobility will have to be done. The Helmholtz Association has been successfully pursuing electromobility research for many years, and it is now expanding that research with two new portfolio themes: Electromobility Research for Transportation Systems, and In-system Electrochemical Storage – Reliability and Integration.

Electromobility Research for Transportation Systems
Nine interdisciplinary institutes from the German Aerospace Center are working together on this portfolio theme. For many years they have been using their extensive expertise to close gaps identified in the areas of vehicles, assistance, and markets and users. Their goal now is to broaden our systemic understanding of electromobility and to help Germany become the leading supplier and market for electromobility. The National Development Plan for Electric Mobility outlines measures on how to achieve those ambitious goals. The National Platform on Electric Mobility describes those measures in greater detail and promotes direct dialogue between research, businesses, the government and the public.
“As Germany’s largest scientific organisation, the Helmholtz Association is actively involved in these debates. Its transport and energy programmes are making major contributions to research and development,” says Prof. Jürgen Mlynek, President of the Helmholtz Association. “The many years that our scientists have spent researching electromobility, whether for vehicle power systems or for transportation and mobility management, are benefitting transport development and the environment.”

In-system Electrochemical Storage – Reliability and Integration
Mobile energy storage solutions are the foundation of future-oriented vehicle powertrain systems. Stationary storage solutions need to play a role in providing green electricity on-demand. Efficient, affordable, user-friendly batteries will be a key technology for helping electromobility to become popular. Battery systems currently in development have very specific and often contradictory properties as a result of the diverse requirements they need to fulfil. “The participating Helmholtz Centres and their university partners have a wide range of expertise in this area, and this allows them to develop suitable solutions for these challenges,” says Mlynek.

The researchers study the diverse application requirements at the system level and look at integrating and combining them in powertrain and storage systems, as well as at the cell and material level. The aim is to ensure that research is system-relevant, has clearly defined application-oriented goals early on, and can be drawn upon when integrating new development approaches.
Electromobility’s future
It is particularly important that the gradual transition to these new technologies is designed in a way that achieves the goals set for electromobility and that wins acceptance in society. The way to do this is to continue developing conventional vehicle technology while also laying the groundwork for a successful roll-out of electromobility. It will also be important to offer solutions for closing known technology gaps in the infrastructure. This will require comprehensive, systemic research that embraces everything from transportation demand, user behaviour, and transportation and mobility management to new vehicle and infrastructure concepts, and the economic and ecological aspects of transport. The Helmholtz Association’s systemic electromobility research reflects this type of broad-based approach.

Background: the Helmholtz Association’s portfolio process
Germany’s Federal Government increased annual funding for the research organisations in the Joint Initiative for Research and Innovation to enable them to address issues of direct relevance to the future of society, promote talented young scientists and make Germany’s research system even more competitive and productive. The Helmholtz Association is using some of these additional funds to finance a number of portfolio themes that a panel of experts from all the Helmholtz Centres identified as particularly promising during a comprehensive evaluation process. University research partners, which provide indispensable expertise, will benefit from this funding as well. From the next funding period, work on the portfolio themes will be continued within regular research programmes.
Participating partners:
Portfolio theme: Electromobility Research for Transportation Systems
Nine institutes at the German Aerospace Center (DLR):
Institute of Aerodynamics and Flow Technology
Institute of Vehicle Concepts
Institute of Communications and Navigation
Institute of Robotics and Mechatronics
Institute of Technical Thermodynamics
Institute of Combustion Technology
Institute of Transport Research
Institute of Transportation Systems
Institute of Materials Research

Portfolio theme: In-system Electrochemical Storage
− Reliability and Integration

German Aerospace Center (DLR)
Karlsruhe Institute of Technology
Forschungszentrum Jülich

Justus Liebig University Giessen
University of Hamburg
Technische Universität Darmstadt
Technische Universität München
RWTH Aachen University
University of Münster
More information is available at:
http://www.helmholtz.de/forschung/portfolioprozess
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10106
http://www.competence-e.kit.edu
http://www.fz-juelich.de/iek/iek-1/DE/Home/home_node.html

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Aeronautics, Space and Transport. With 32,698 employees in 18 research centres and an annual budget of approximately €3.4 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the Media:

Thomas Gazlig
Head of Communications and Media Relations
Berlin Office
Anna-Louisa-Karsch-Straße 2
10178 Berlin
Tel./Fax: 030 206 329-57/60
presse@helmholtz.de

Janine Tychsen
Press Officer
Tel.: 030 206 329-24
janine.tychsen@helmholtz.de

Thomas Gazlig | Helmholtz-Gemeinschaft
Further information:
http://www.helmholtz.de/

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>