Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electromobility – an important topic for the future

13.02.2012
The German government wants one million electric cars to be on Germany’s roads by 2020.
But for that to happen, more research into electromobility will have to be done. The Helmholtz Association has been successfully pursuing electromobility research for many years, and it is now expanding that research with two new portfolio themes: Electromobility Research for Transportation Systems, and In-system Electrochemical Storage – Reliability and Integration.

Electromobility Research for Transportation Systems
Nine interdisciplinary institutes from the German Aerospace Center are working together on this portfolio theme. For many years they have been using their extensive expertise to close gaps identified in the areas of vehicles, assistance, and markets and users. Their goal now is to broaden our systemic understanding of electromobility and to help Germany become the leading supplier and market for electromobility. The National Development Plan for Electric Mobility outlines measures on how to achieve those ambitious goals. The National Platform on Electric Mobility describes those measures in greater detail and promotes direct dialogue between research, businesses, the government and the public.
“As Germany’s largest scientific organisation, the Helmholtz Association is actively involved in these debates. Its transport and energy programmes are making major contributions to research and development,” says Prof. Jürgen Mlynek, President of the Helmholtz Association. “The many years that our scientists have spent researching electromobility, whether for vehicle power systems or for transportation and mobility management, are benefitting transport development and the environment.”

In-system Electrochemical Storage – Reliability and Integration
Mobile energy storage solutions are the foundation of future-oriented vehicle powertrain systems. Stationary storage solutions need to play a role in providing green electricity on-demand. Efficient, affordable, user-friendly batteries will be a key technology for helping electromobility to become popular. Battery systems currently in development have very specific and often contradictory properties as a result of the diverse requirements they need to fulfil. “The participating Helmholtz Centres and their university partners have a wide range of expertise in this area, and this allows them to develop suitable solutions for these challenges,” says Mlynek.

The researchers study the diverse application requirements at the system level and look at integrating and combining them in powertrain and storage systems, as well as at the cell and material level. The aim is to ensure that research is system-relevant, has clearly defined application-oriented goals early on, and can be drawn upon when integrating new development approaches.
Electromobility’s future
It is particularly important that the gradual transition to these new technologies is designed in a way that achieves the goals set for electromobility and that wins acceptance in society. The way to do this is to continue developing conventional vehicle technology while also laying the groundwork for a successful roll-out of electromobility. It will also be important to offer solutions for closing known technology gaps in the infrastructure. This will require comprehensive, systemic research that embraces everything from transportation demand, user behaviour, and transportation and mobility management to new vehicle and infrastructure concepts, and the economic and ecological aspects of transport. The Helmholtz Association’s systemic electromobility research reflects this type of broad-based approach.

Background: the Helmholtz Association’s portfolio process
Germany’s Federal Government increased annual funding for the research organisations in the Joint Initiative for Research and Innovation to enable them to address issues of direct relevance to the future of society, promote talented young scientists and make Germany’s research system even more competitive and productive. The Helmholtz Association is using some of these additional funds to finance a number of portfolio themes that a panel of experts from all the Helmholtz Centres identified as particularly promising during a comprehensive evaluation process. University research partners, which provide indispensable expertise, will benefit from this funding as well. From the next funding period, work on the portfolio themes will be continued within regular research programmes.
Participating partners:
Portfolio theme: Electromobility Research for Transportation Systems
Nine institutes at the German Aerospace Center (DLR):
Institute of Aerodynamics and Flow Technology
Institute of Vehicle Concepts
Institute of Communications and Navigation
Institute of Robotics and Mechatronics
Institute of Technical Thermodynamics
Institute of Combustion Technology
Institute of Transport Research
Institute of Transportation Systems
Institute of Materials Research

Portfolio theme: In-system Electrochemical Storage
− Reliability and Integration

German Aerospace Center (DLR)
Karlsruhe Institute of Technology
Forschungszentrum Jülich

Justus Liebig University Giessen
University of Hamburg
Technische Universität Darmstadt
Technische Universität München
RWTH Aachen University
University of Münster
More information is available at:
http://www.helmholtz.de/forschung/portfolioprozess
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10106
http://www.competence-e.kit.edu
http://www.fz-juelich.de/iek/iek-1/DE/Home/home_node.html

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Aeronautics, Space and Transport. With 32,698 employees in 18 research centres and an annual budget of approximately €3.4 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the Media:

Thomas Gazlig
Head of Communications and Media Relations
Berlin Office
Anna-Louisa-Karsch-Straße 2
10178 Berlin
Tel./Fax: 030 206 329-57/60
presse@helmholtz.de

Janine Tychsen
Press Officer
Tel.: 030 206 329-24
janine.tychsen@helmholtz.de

Thomas Gazlig | Helmholtz-Gemeinschaft
Further information:
http://www.helmholtz.de/

More articles from Power and Electrical Engineering:

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

nachricht Researchers at Kiel University develop extremely sensitive sensor system for magnetic fields
15.02.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>