Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of Recycling Method to Advance Fuel Cell Practicality

21.03.2011
The use of hydrogen as a practical, widespread alternative fuel to gasoline took another step today as researchers from Los Alamos National Laboratory and The University of Alabama announce a method for recycling a hydrogen fuel source.

The scientists demonstrate that a lightweight material, ammonia borane, can be a feasible material for storing hydrogen on vehicles, according to an article publishing in the March 18 issue of Science. In the upcoming article, researchers describe an efficient method of adding hydrogen back into the material once the alternative fuel is spent.

“This is a critical step if we want to use hydrogen as a fuel for the transportation industry,” said Dr. David Dixon, the Robert Ramsay Chair of Chemistry at The University of Alabama and one of the article’s co-authors.

In this approach, ammonia borane in a fuel tank produces hydrogen which, when combined with oxygen in the vehicle’s fuel cell, releases energy. That energy is then converted to electricity that powers an electric motor. Water is the only emission.

After hydrogen is released from the ammonia borane, a residue, which the researchers refer to as “spent fuel,” remains.

“The spent fuel stays in the car, and we need to add hydrogen back to it in order to use it again,” Dixon says. “What this paper describes is an efficient way to add the hydrogen back to make the ammonia borane again. And it can be done in a single reactor.”

Practical, efficient and affordable storage of hydrogen has been one of the challenges in making the powering of electrical motors via hydrogen fuel cells a viable alternative to traditional gasoline powered engines.

Benefits of hydrogen fuel cell technology include cleaner air and less dependence on foreign oil.

Today’s announcement of a successful “fuel regeneration process,” as the scientists call it, overcomes one key hurdle.

The experimental work was done at Los Alamos and the computer modeling work was done in Dixon’s University of Alabama lab.

UA co-authors with Dixon are Edward “Ted” B. Garner III, a University graduate student from Florence; J. Pierce Robinson, a UA undergraduate from Atmore; and Dr. Monica Vasiliu, a UA alumna from Romania who is working with Dixon as a post-doctoral researcher.

The article’s lead author is Dr. Andrew D. Sutton of Los Alamos National Laboratory. Other Los Alamos co-authors are Drs. Anthony K. Burrell, John C. Gordon, Tessui Nakagawa and Kevin C. Ott.

While there has been much progress toward making the widespread use of hydrogen fuel cell technology practical, Dixon said other challenges remain.

“The basic three steps – the initial synthesis, the controlled release of hydrogen, and the regeneration of fuel – are actually in pretty good shape. The next piece is to get a cheap source of hydrogen that doesn’t come from coal or fossil fuels.

“The biggest hurdle which we, and everybody else in the world, are looking at is ‘how do I use solar energy efficiently to split water in order to make hydrogen and oxygen.”

The research, funded by the U.S. Department of Energy, is through the DOE’s Chemical Hydrogen Storage Center of Excellence. This entity, funded with $30 million, is a collaboration among multiple university and industrial partners across the country, including The University of Alabama, and with the Los Alamos National Laboratory in New Mexico and Pacific Northwest National Laboratory in Washington.

Research for the project at UA, which was named a partner in the entity in 2004, is funded by some $2.2 million.

Source: Dr. David Dixon, 205/348-8441, dadixon@bama.ua.edu; Writer: Chris Bryant, UA Media Relations, 205/348-8323, cbryant@ur.ua.edu

Chris Bryant | Newswise Science News
Further information:
http://www.ua.edu

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>