Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desalinating Seawater with Minimal Energy Use

12.07.2011
At a pilot facility in Singapore, Siemens has cut the energy needed to desalinate seawater by more than 50 percent.

The plant processes 50 cubic meters of water per day, consuming only 1.5 kilowatt-hours of electricity per cubic meter. The most efficient desalination technique currently in use is reverse osmosis, which consumes more than twice as much energy. The magazine "Pictures of the Future" reports that the new technique uses an electric field to remove the salt from the water.


Plans call for demonstration units to be set up in Singapore, the U.S., and the Caribbean by mid-2012.

Experts estimate that global water consumption will rise by 40 percent over the next 15 years. Because desert countries and small nations such as Singapore have few sources of fresh water, they are increasingly desalinating seawater, which still consumes a lot of energy. Turning one cubic meter of seawater into steam takes about 10 kilowatt-hours of electricity. By contrast, reverse osmosis, which presses the water through a filter, consumes about four kilowatt-hours for the same amount of water.

The new energy-saving system from Siemens uses electrodialysis. It extracts the salts’ positively and negatively charged ions from the water by means of an electric field. Special membranes that only allow a single type of ion to pass through create channels that collect either the resulting brine or the purified water. However, the process becomes inefficient as the salt concentration declines because the water’s electrical resistance increases.

That’s why a Continuous Electrodeionization (CEDI) system is used to extract the last percentage of salt in the water. In this system, ion exchange resins located between the membranes capture the ions and transport them away from the water.

Experts from Siemens Corporate Technology are currently working on a simulation model that will help further improve the process. As part of a project sponsored by the German Research Ministry, the researchers will simulate the processes at the molecular level. They hope the model will help them to better understand the transport of the ions through the membranes as well as the dynamics of the water flow in the electric field.

Siemens developed the new desalination technique at the Singapore WaterHub, a research center for water treatment systems. The technology is part of Siemens’ Environmental Portfolio, with which the company generated about €28 billion in sales in fiscal year 2010.

Dr. Norbert Aschenbrenner | Siemens ResearchNews
Further information:
http://www.siemens.com/researchnews

More articles from Power and Electrical Engineering:

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

nachricht A water-based, rechargeable battery
09.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>