Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could metal particles be the clean fuel of the future?

10.12.2015

McGill-led research points to metal powders as potential replacement for fossil fuels

Can you imagine a future where your car is fueled by iron powder instead of gasoline?


Stabilized flames of different metal powders burn with air, compared to a methane-air flame.

Credit: Alternative Fuels Laboratory/McGill University

Metal powders, produced using clean primary energy sources, could provide a more viable long-term replacement for fossil fuels than other widely discussed alternatives, such as hydrogen, biofuels or batteries, according to a study in the Dec. 15 issue of the journal Applied Energy.

"Technologies to generate clean electricity - primarily solar and wind power - are being developed rapidly; but we can't use that electricity for many of the things that oil and gas are used for today, such as transportation and global energy trade," notes McGill University professor Jeffrey Bergthorson, lead author of the new study.

"Biofuels can be part of the solution, but won't be able to satisfy all the demand; hydrogen requires big, heavy fuel tanks and is explosive, and batteries are too bulky and don't store enough energy for many applications," says Bergthorson, a mechanical engineering professor and Associate Director of the Trottier Institute for Sustainability in Engineering and Design at McGill. "Using metal powders as recyclable fuels that store clean primary energy for later use is a very promising alternative solution."

Novel concept

The Applied Energy paper, co-authored by Bergthorson with five other McGill researchers and a European Space Agency scientist in the Netherlands, lays out a novel concept for using tiny metal particles - similar in size to fine flour or icing sugar - to power external-combustion engines.

Unlike the internal-combustion engines used in gasoline-powered cars, external-combustion engines use heat from an outside source to drive an engine. External-combustion engines, modern versions of the coal-fired steam locomotives that drove the industrial era, are widely used to generate power from nuclear, coal or biomass fuels in power stations.

The idea of burning metal powders is nothing new - they've been used for centuries in fireworks, for instance. Since the mid-20th century, they've also been used in rocket propellants, such as the space shuttle's solid-fuel booster rockets. But relatively little research has been done in recent decades on the properties of metal flames, and the potential for metal powders to be used as a recyclable fuel in a wide range of applications has been largely overlooked by scientists.

Recyclable after combustion

The idea put forward by the McGill team takes advantage of an important property of metal powders: when burned, they react with air to form stable, nontoxic solid-oxide products that can be collected relatively easily for recycling - unlike the CO2 emissions from burning fossil fuels that escape into the atmosphere.

Using a custom-built burner, the McGill researchers demonstrated that a flame can be stabilized in a flow of tiny metal particles suspended in air. Flames from metal powders "appear quite similar" to those produced by burning hydrocarbon fuels, the researchers write. "The energy and power densities of the proposed metal-fueled heat engines are predicted to be close to current fossil-fueled internal combustion engines, making them an attractive technology for a future low-carbon society."

Iron could be the primary candidate for this purpose, according to the study. Millions of tons of iron powders are already produced annually for the metallurgy, chemical and electronic industries. And iron is readily recyclable with well-established technologies, and some novel techniques can avoid the carbon dioxide emissions associated with traditional iron production using coal.

Next step: building a prototype

While laboratory work at McGill and elsewhere has shown that the use of metal fuels with heat engines is technically feasible, no one has yet demonstrated the idea in practice. The next step toward turning the lab findings into usable technology, therefore, will be "to build a prototype burner and couple it to a heat engine," Bergthorson says.

"Developing metal recycling processes that don't involve CO2 emissions is also critical."

Co-author David Jarvis, head of strategic and emerging technologies at the European Space Agency, adds: "We are very interested in this technology because it opens the door to new propulsion systems that can be used in space and on earth. The shift away from fossil fuels for vehicle propulsion is a clear trend for the future. While not perfected and commercialized today, the use of low-cost metallic fuels, like iron powder, is a worthy alternative to petrol and diesel fuels. If we can demonstrate, for the first time, an iron-fueled engine with almost zero CO2 emissions, we believe this would then trigger even more innovation and cost reduction in the near future."

###

Research on metal combustion at McGill has been funded over the past 20 years by the Natural Sciences and Engineering Research Council of Canada, the Canadian Department of National Defence, the U.S. Defence Threat Reduction Agency, the Canadian Space Agency, the European Space Agency, Martec Ltd. (Halifax, NS), and the Trottier Institute for Sustainability in Engineering and Design.

"Direct combustion of recyclable metal fuels for zero-carbon heat and power", J.M. Bergthorson et al, Applied Energy, 15 December 2015. doi: 10.1016/j.apenergy.2015.09.037 http://www.sciencedirect.com/science/article/pii/S0306261915011071

Media Contact

Chris Chipello
christopher.chipello@mcgill.ca
514-398-4201

 @McGillU

http://www.mcgill.ca 

Chris Chipello | EurekAlert!

Further reports about: CO2 CO2 emissions European combustion fossil fuels fuels powder powders primary energy

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>