Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could metal particles be the clean fuel of the future?

10.12.2015

McGill-led research points to metal powders as potential replacement for fossil fuels

Can you imagine a future where your car is fueled by iron powder instead of gasoline?


Stabilized flames of different metal powders burn with air, compared to a methane-air flame.

Credit: Alternative Fuels Laboratory/McGill University

Metal powders, produced using clean primary energy sources, could provide a more viable long-term replacement for fossil fuels than other widely discussed alternatives, such as hydrogen, biofuels or batteries, according to a study in the Dec. 15 issue of the journal Applied Energy.

"Technologies to generate clean electricity - primarily solar and wind power - are being developed rapidly; but we can't use that electricity for many of the things that oil and gas are used for today, such as transportation and global energy trade," notes McGill University professor Jeffrey Bergthorson, lead author of the new study.

"Biofuels can be part of the solution, but won't be able to satisfy all the demand; hydrogen requires big, heavy fuel tanks and is explosive, and batteries are too bulky and don't store enough energy for many applications," says Bergthorson, a mechanical engineering professor and Associate Director of the Trottier Institute for Sustainability in Engineering and Design at McGill. "Using metal powders as recyclable fuels that store clean primary energy for later use is a very promising alternative solution."

Novel concept

The Applied Energy paper, co-authored by Bergthorson with five other McGill researchers and a European Space Agency scientist in the Netherlands, lays out a novel concept for using tiny metal particles - similar in size to fine flour or icing sugar - to power external-combustion engines.

Unlike the internal-combustion engines used in gasoline-powered cars, external-combustion engines use heat from an outside source to drive an engine. External-combustion engines, modern versions of the coal-fired steam locomotives that drove the industrial era, are widely used to generate power from nuclear, coal or biomass fuels in power stations.

The idea of burning metal powders is nothing new - they've been used for centuries in fireworks, for instance. Since the mid-20th century, they've also been used in rocket propellants, such as the space shuttle's solid-fuel booster rockets. But relatively little research has been done in recent decades on the properties of metal flames, and the potential for metal powders to be used as a recyclable fuel in a wide range of applications has been largely overlooked by scientists.

Recyclable after combustion

The idea put forward by the McGill team takes advantage of an important property of metal powders: when burned, they react with air to form stable, nontoxic solid-oxide products that can be collected relatively easily for recycling - unlike the CO2 emissions from burning fossil fuels that escape into the atmosphere.

Using a custom-built burner, the McGill researchers demonstrated that a flame can be stabilized in a flow of tiny metal particles suspended in air. Flames from metal powders "appear quite similar" to those produced by burning hydrocarbon fuels, the researchers write. "The energy and power densities of the proposed metal-fueled heat engines are predicted to be close to current fossil-fueled internal combustion engines, making them an attractive technology for a future low-carbon society."

Iron could be the primary candidate for this purpose, according to the study. Millions of tons of iron powders are already produced annually for the metallurgy, chemical and electronic industries. And iron is readily recyclable with well-established technologies, and some novel techniques can avoid the carbon dioxide emissions associated with traditional iron production using coal.

Next step: building a prototype

While laboratory work at McGill and elsewhere has shown that the use of metal fuels with heat engines is technically feasible, no one has yet demonstrated the idea in practice. The next step toward turning the lab findings into usable technology, therefore, will be "to build a prototype burner and couple it to a heat engine," Bergthorson says.

"Developing metal recycling processes that don't involve CO2 emissions is also critical."

Co-author David Jarvis, head of strategic and emerging technologies at the European Space Agency, adds: "We are very interested in this technology because it opens the door to new propulsion systems that can be used in space and on earth. The shift away from fossil fuels for vehicle propulsion is a clear trend for the future. While not perfected and commercialized today, the use of low-cost metallic fuels, like iron powder, is a worthy alternative to petrol and diesel fuels. If we can demonstrate, for the first time, an iron-fueled engine with almost zero CO2 emissions, we believe this would then trigger even more innovation and cost reduction in the near future."

###

Research on metal combustion at McGill has been funded over the past 20 years by the Natural Sciences and Engineering Research Council of Canada, the Canadian Department of National Defence, the U.S. Defence Threat Reduction Agency, the Canadian Space Agency, the European Space Agency, Martec Ltd. (Halifax, NS), and the Trottier Institute for Sustainability in Engineering and Design.

"Direct combustion of recyclable metal fuels for zero-carbon heat and power", J.M. Bergthorson et al, Applied Energy, 15 December 2015. doi: 10.1016/j.apenergy.2015.09.037 http://www.sciencedirect.com/science/article/pii/S0306261915011071

Media Contact

Chris Chipello
christopher.chipello@mcgill.ca
514-398-4201

 @McGillU

http://www.mcgill.ca 

Chris Chipello | EurekAlert!

Further reports about: CO2 CO2 emissions European combustion fossil fuels fuels powder powders primary energy

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>