Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color sensors for better vision

07.10.2009
The car of the future will have lots of smart assistants onboard – helping to park the car, recognize traffic signs and to warn the driver of blind spot hazards. Many driver assistance systems incorporate high-tech cameras which have to meet a wide range of requirements.

They must be able to withstand high ambient temperatures and be particularly small, light and robust. What's more, they have to reliably capture all the required images and should cost as little as possible. Nowadays CMOS sensors are used for most in-car systems.

These semiconductor chips convert light signals into electrical pulses and are installed in most digital cameras. At present, however, the sensors used for industrial and other special cameras are mostly color blind.

Now researchers at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg are adding some color to the picture. They have developed a new process for producing CMOS image sensors which enables the chips to see color. Normally the image sensors are produced on silicon wafers using a semiconductor technique, the CMOS process. "We have integrated a color filter system in the process," explains Prof. Dr. Holger Vogt, Deputy Director of the IMS. "In the same way as the human eye needs color-specific cone types, color filters have to be inserted in front of the sensors so that they can distinguish color." This job is handled by polymers dyed in the primary colors red, green and blue. Each pixel on the sensor is coated with one of the three colors by a machine which coats the sensor disk propels with a micrometer-thick polymer layer.

Using UV light and a mask which is only transparent on the desired pixels, the dye is fixed at the requisite points and the rest is then washed off. In addition, the researchers have developed special microlenses which help the sensor to capture and measure the light more efficiently. With the aid of a transparent polyimide they create a separate lens for each individual pixel, which almost doubles the light-sensitivity of the image sensor.

The optimized CMOS process not only makes it possible to cost-efficiently improve the performance of driver assistance systems. Endoscopes can also benefit from the new properties of CMOS image sensors. The researchers are presenting the CMOS process at the Vision trade fair from November 3 to 5 in Stuttgart (Hall 6, Stand 6D12).

Holger Vogt | EurekAlert!
Further information:
http://www.iis.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>