Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean power from waste heat

04.06.2014

Siemens has developed a technology to use waste heat, which previously had gone unused, to generate electricity.

The solution employs silicone oils, which have a lower enthalpy of vaporization than water, and is needed because waste heat produced in industrial plants or power stations often does not have enough energy to drive a turbine with steam. Siemens recently introduced its "Organic Rankine Cycle" module.

Under this solution, the working medium drives a turbine, and then cools and reverts to its initial liquid state. Thus, electricity can be generated without the additional use of energy or raw materials, and without producing additional carbon dioxide emissions.

Conventional power plants usually convert only about 50 percent of fuel energy into electricity, and most of the waste heat is released through a cooling tower. A great deal of waste heat is produced in other industries as well, such as chemicals, glass-making, paper-making and steel production to name just a few examples. It is used often to pre-heat other substances or, if that is not possible and if the waste heat is not hot enough to drive a conventional steam turbine, the valuable energy is wasted.

Using silicone oils, Siemens engineers have succeeded in converting this energy into electricity. These oils have a much lower enthalpy of vaporization than water, and can be used to generate electricity from waste heat of only about 300 degrees. 

The Organic Rankine Cycle (ORC) module is derived from the so-called Rankine Cycle, a closed loop used in steam-driven heat engines. In this case, however, organic silicone oils are used as the work medium.

The oil absorbs the waste heat energy by way of a heat exchanger. It turns to vapor and drives a turbine before being completely liquefied again in a condenser and pumped back to the vaporizer. The heat released in the cooling process is also recovered to pre-heat the oil.

The ORC module has an output of up to two megawatts; variants with higher output ratings are expected to come on line in the medium term. The heart of this module is the proven SST-060 steam turbine, which has already been installed successfully more than 850 times. The silicone oil employed in this module is chlorine-free and non-toxic.

All in all, the investment costs and maintenance costs of an ORC module are comparatively low. And thanks to the lower temperatures and pressures and other factors, it is easier to operate than conventional steam-driven turbines. The ORC module features an automatic mode and requires no additional personnel, making it a very economical option for using energy sources more efficiently

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: ORC Organic chemicals dioxide electricity emissions heat loop pressures silicone steam temperatures

More articles from Power and Electrical Engineering:

nachricht Compact Time Converter for reliable operation in harsh environments
03.07.2015 | Siemens AG

nachricht Viaducts with wind turbines, the new renewable energy source
02.07.2015 | FECYT - Spanish Foundation for Science and Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>