Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean power from waste heat

04.06.2014

Siemens has developed a technology to use waste heat, which previously had gone unused, to generate electricity.

The solution employs silicone oils, which have a lower enthalpy of vaporization than water, and is needed because waste heat produced in industrial plants or power stations often does not have enough energy to drive a turbine with steam. Siemens recently introduced its "Organic Rankine Cycle" module.

Under this solution, the working medium drives a turbine, and then cools and reverts to its initial liquid state. Thus, electricity can be generated without the additional use of energy or raw materials, and without producing additional carbon dioxide emissions.

Conventional power plants usually convert only about 50 percent of fuel energy into electricity, and most of the waste heat is released through a cooling tower. A great deal of waste heat is produced in other industries as well, such as chemicals, glass-making, paper-making and steel production to name just a few examples. It is used often to pre-heat other substances or, if that is not possible and if the waste heat is not hot enough to drive a conventional steam turbine, the valuable energy is wasted.

Using silicone oils, Siemens engineers have succeeded in converting this energy into electricity. These oils have a much lower enthalpy of vaporization than water, and can be used to generate electricity from waste heat of only about 300 degrees. 

The Organic Rankine Cycle (ORC) module is derived from the so-called Rankine Cycle, a closed loop used in steam-driven heat engines. In this case, however, organic silicone oils are used as the work medium.

The oil absorbs the waste heat energy by way of a heat exchanger. It turns to vapor and drives a turbine before being completely liquefied again in a condenser and pumped back to the vaporizer. The heat released in the cooling process is also recovered to pre-heat the oil.

The ORC module has an output of up to two megawatts; variants with higher output ratings are expected to come on line in the medium term. The heart of this module is the proven SST-060 steam turbine, which has already been installed successfully more than 850 times. The silicone oil employed in this module is chlorine-free and non-toxic.

All in all, the investment costs and maintenance costs of an ORC module are comparatively low. And thanks to the lower temperatures and pressures and other factors, it is easier to operate than conventional steam-driven turbines. The ORC module features an automatic mode and requires no additional personnel, making it a very economical option for using energy sources more efficiently

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: ORC Organic chemicals dioxide electricity emissions heat loop pressures silicone steam temperatures

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>