Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing electrons in action

20.07.2009
A technique for characterizing ultrafast light pulses will lead to better optical probes for studying electron dynamics

Scientists at RIKEN have developed a way to measure the wavelike properties of ultrafast (attosecond) light pulses—an important step toward being able to probe the dynamics of electrons, atoms and molecules.

Quantum mechanics theory can completely describe the structure of atoms and molecules. But directly observing electronic motion in an atom requires a technique that can take snapshots of the electron on time scales of less than a femtosecond (10-15 s). To this end, scientists are working to generate ultraviolet light pulses that are only 10–100 attoseconds (10-18 s) long.

Electrons, like light, have wavelike properties. Thus, when a fast optical pulse—or sequence of pulses—interacts with the electrons in an atom, it creates an interference pattern that can effectively image the electron over time.

The challenge is to create a sequence, or ‘train’, of pulses, each with the same, well-defined wavelike properties. For this reason, the technique developed by Yasuo Nabekawa and colleagues at the RIKEN Advanced Science Institute in Wako allows them to compare consecutive pulses in an attosecond light pulse series1.

“Ultimately, the goal of our research is to control atoms and molecules with the attosecond pulse train,” says Nabekawa.

To produce the attosecond pulses, the team started with a series of intense laser-generated ultraviolet light pulses, each approximately 40 femtoseconds in duration. When the laser pulses interacted with a gas of xenon atoms, they generated pulses of light with odd integer (1, 3, 5, etc…) multiples of the frequency of the original laser pulse. These higher frequency pulses—or, ‘harmonics’—reached into the attosecond range.

Detecting ultrafast motion in atoms and molecules requires that the pulses in the train are ‘coherent’ with each other, meaning they are in phase, similar to soldiers marching in lock-step. The team therefore designed its experiment specifically to determine the coherence between the pulses in each of the higher harmonics.

Spatially separating the harmonics allowed the team to measure the coherence between pulses of each harmonic individually. Each harmonic was then split into two beams that traveled down a long arm, before being recombined (Fig. 1). A CCD camera measured the interference pattern between the recombined beams, which provides a measure of the coherence between pulses.

While the current measurements relate to characterizing the optical pulse itself, the RIKEN team plans to build upon these experiments to study ionization and dissociation of electrons from atoms and molecules.

Reference

1. Nabekawa, Y., Shimizu, T., Furukawa,Y., Takahashi, E.J. & Midorikawa, K. Interferometry of attosecond pulse trains in the extreme ultraviolet wavelength region. Physical Review Letters 102, 213904 (2009).

The corresponding author for this highlight is based at the RIKEN Intense Attosecond Pulse Research Team

Saeko Okada | Research asia research news
Further information:
http://www.researchsea.com
http://www.rikenresearch.riken.jp/research/745/

More articles from Power and Electrical Engineering:

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

nachricht Molecular switch will facilitate the development of pioneering electro-optical devices
24.05.2018 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>