Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing electrons in action

20.07.2009
A technique for characterizing ultrafast light pulses will lead to better optical probes for studying electron dynamics

Scientists at RIKEN have developed a way to measure the wavelike properties of ultrafast (attosecond) light pulses—an important step toward being able to probe the dynamics of electrons, atoms and molecules.

Quantum mechanics theory can completely describe the structure of atoms and molecules. But directly observing electronic motion in an atom requires a technique that can take snapshots of the electron on time scales of less than a femtosecond (10-15 s). To this end, scientists are working to generate ultraviolet light pulses that are only 10–100 attoseconds (10-18 s) long.

Electrons, like light, have wavelike properties. Thus, when a fast optical pulse—or sequence of pulses—interacts with the electrons in an atom, it creates an interference pattern that can effectively image the electron over time.

The challenge is to create a sequence, or ‘train’, of pulses, each with the same, well-defined wavelike properties. For this reason, the technique developed by Yasuo Nabekawa and colleagues at the RIKEN Advanced Science Institute in Wako allows them to compare consecutive pulses in an attosecond light pulse series1.

“Ultimately, the goal of our research is to control atoms and molecules with the attosecond pulse train,” says Nabekawa.

To produce the attosecond pulses, the team started with a series of intense laser-generated ultraviolet light pulses, each approximately 40 femtoseconds in duration. When the laser pulses interacted with a gas of xenon atoms, they generated pulses of light with odd integer (1, 3, 5, etc…) multiples of the frequency of the original laser pulse. These higher frequency pulses—or, ‘harmonics’—reached into the attosecond range.

Detecting ultrafast motion in atoms and molecules requires that the pulses in the train are ‘coherent’ with each other, meaning they are in phase, similar to soldiers marching in lock-step. The team therefore designed its experiment specifically to determine the coherence between the pulses in each of the higher harmonics.

Spatially separating the harmonics allowed the team to measure the coherence between pulses of each harmonic individually. Each harmonic was then split into two beams that traveled down a long arm, before being recombined (Fig. 1). A CCD camera measured the interference pattern between the recombined beams, which provides a measure of the coherence between pulses.

While the current measurements relate to characterizing the optical pulse itself, the RIKEN team plans to build upon these experiments to study ionization and dissociation of electrons from atoms and molecules.

Reference

1. Nabekawa, Y., Shimizu, T., Furukawa,Y., Takahashi, E.J. & Midorikawa, K. Interferometry of attosecond pulse trains in the extreme ultraviolet wavelength region. Physical Review Letters 102, 213904 (2009).

The corresponding author for this highlight is based at the RIKEN Intense Attosecond Pulse Research Team

Saeko Okada | Research asia research news
Further information:
http://www.researchsea.com
http://www.rikenresearch.riken.jp/research/745/

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>