Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blades of grass inspire advance in organic solar cells


Using a bio-mimicking analog of one of nature's most efficient light-harvesting structures, blades of grass, a research team has taken a major step in developing long-sought polymer architecture to boost power-conversion efficiency of light to electricity

Using a bio-mimicking analog of one of nature's most efficient light-harvesting structures, blades of grass, an international research team led by Alejandro Briseno of the University of Massachusetts Amherst has taken a major step in developing long-sought polymer architecture to boost power-conversion efficiency of light to electricity for use in electronic devices.

Vertical nanopillars are ideal geometries for getting around the challenges of producing polymer architecture to boost power-conversion efficiency of light to electricity to power electronic devices.

Credit: UMass AMherst

Briseno, with colleagues and graduate students at UMass Amherst and others at Stanford University and Dresden University of Technology, Germany, report in the current issue of Nano Letters that by using single-crystalline organic nanopillars, or "nanograss," they found a way to get around dead ends, or discontinuous pathways, that pose a serious drawback when using blended systems known as bulk heterojunction donor-acceptor, or positive-negative (p-n), junctions for harvesting energy in organic solar cells.

Briseno's research group is one of very few in the world to design and grow organic single-crystal p-n junctions. He says, "This work is a major advancement in the field of organic solar cells because we have developed what the field considers the 'Holy Grail' architecture for harvesting light and converting it to electricity." The breakthrough in morphology control should have widespread use in solar cells, batteries and vertical transistors, he adds.

Briseno explains, "For decades scientists and engineers have placed great effort in trying to control the morphology of p-n junction interfaces in organic solar cells. We report here that we have at last developed the ideal architecture composed of organic single-crystal vertical nanopillars." Nanopillars are nanoscale, engineered surfaces with billions of organic posts that resemble blades of grass, and like grass blades they are particularly effective at converting light to energy.

The advance not only addresses the problem of dead ends or discontinuous pathways that make for inefficient energy transfer, but it also solves some instability problems, where the materials in mixed blends of polymers tend to lose their phase-separated behavior over time, degrading energy transfer, the polymer chemist says. Also, materials in blended systems tend to be amorphous to semi-crystalline at best and "this is a disadvantage since charge transport is more efficient in highly crystalline systems."

Specifically, to control the molecular orientation and packing at electrode surfaces, the team combined knowledge about graphene and organic crystals. Though it was difficult, Briseno says, they managed to get the necessary compounds to stack like coins. Stacked compounds are ideal for charge transport since this configuration has the largest charge transport anisotropy. Charge transport anisotropy is a phenomenon where electrons flow faster along a particular crystallographic direction due to close molecule-molecule interactions. In this case, the anisotropy is along the nanopillar, perpendicular to the substrate.

Briseno says, "The biggest challenge in producing this architecture was finding the appropriate substrate that would enable the molecules to stack vertically. We had exploited essentially every substrate possible until we finally succeeded with graphene," he adds, which happened by accident when an undergraduate chose the wrong substrate to grow crystals on.

"For over a week the student was growing vertical crystals and we didn't even realize until we imaged the surface of the substrate with a scanning electron microscope. We were shocked to see little crystals standing upright! We ultimately optimized the conditions and determined the mechanism of crystallization," the polymer chemist adds.

Vertical nanopillars are ideal geometries for getting around these challenges, Briseno says, "because charge separation/collection is most efficient perpendicular to the plastic device. In this case, our nanopillars highly resemble nanograss. Our systems share similar attributes of grass such as high density array system, vertical orientations and the ability to efficiently convert light into energy."

The technique is simple, inexpensive and applicable to a library of donor and acceptor compounds that are commercially available, he notes. "We envision that our nanopillar solar cells will appeal to low-end energy applications such as gadgets, toys, sensors and short lifetime disposable devices."

Janet Lathrop | Eurek Alert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>