Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ARPA-E Grant Aims to Reduce Cost of Wind Turbines

14.01.2010
A technology originally developed to increase lift in aircraft wings and simplify helicopter rotors may soon help reduce the cost of manufacturing and operating wind turbines used for generating electricity.

This “circulation control” aerodynamic technology could allow the wind turbines to produce significantly more power than current devices at the same wind speed.

Research aimed at adapting circulation control technology to wind turbine blades will be conducted by a California company, PAX Streamline, in collaboration with the Georgia Institute of Technology. The two-year project, which will lead to construction of a demonstration pneumatic wind turbine, will be supported by a $3 million grant from the Advanced Research Projects Agency-Energy – the federal energy research and development organization also known as ARPA-E.

“Our goal will be to make generation of electricity from wind turbines less expensive by eliminating the need for the complex blade shapes and mechanical control systems used in current turbines,” said Robert J. Englar, principal research engineer at the Georgia Tech Research Institute (GTRI). “Because these new blades would operate effectively at lower wind speeds, we could potentially open up new geographic areas to wind turbine use. Together, these advances could significantly expand the generation of electricity from wind power in the United States.”

Circulation control techniques use compressed air blown from slots on the trailing edges of wings or hollow blades to change the aerodynamic properties of those wings or blades. In aircraft, circulation control wings improve lift, allowing aircraft to fly at much lower speeds – and take off and land in much shorter distances. In helicopter rotor blades, the technique – also known as the “circulation control rotor” – both simplifies the rotor and its control system and produces more lift.

The ARPA-E project will apply the technique to controlling the aerodynamic properties of wind turbine blades, which now must be made in complicated shapes and controlled by complex control mechanisms to extract optimal power from the wind.

“The speed at which these turbines would begin to operate will be much lower than with existing blades,” said Englar. “Places that wind maps have previously indicated would not be suitable locations for wind turbines may now be useful. The blown technology should also allow safe operation at higher wind speeds and in wind gusts that would cause existing turbines to be shut down to prevent damage. ”

Because they would produce more aerodynamic force, torque and power than comparable blades, these blown structures being developed by Georgia Tech and PAX could also allow a reduction in the size of the wind turbines.

“If you need a specific amount of wind force and torque generated by the wind turbine to generate electricity, we could get that force and torque from a smaller blade area because we’d have more powerful lifting surfaces,” Englar explained.

A major question awaiting study is how much energy will be required to produce the compressed air the blown blades need to operate. Preliminary studies done by Professor Lakshmi Sankar in Georgia Tech’s School of Aerospace Engineering suggest that wind turbines with the blown blades could produce 30 to 40 percent more power than conventional turbines at the same wind speed – even when the energy required to produce the compressed air is subtracted from the total energy production.

The new turbine blades will be developed at GTRI’s low-speed wind tunnel research facility located in Cobb County, north of Atlanta.

Officials of PAX Streamline see the circulation control technology as key to the development of a new generation of turbines that could significantly lower the cost of producing electricity from the wind.

“This is a significant validation of our established turbine R&D,” said PAX CEO John Webley. “With this grant, we can rapidly accelerate our research program and, within the next two years, deploy a prototype wind turbine which demonstrates our game-changing technology.”

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>