Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ARPA-E Grant Aims to Reduce Cost of Wind Turbines

14.01.2010
A technology originally developed to increase lift in aircraft wings and simplify helicopter rotors may soon help reduce the cost of manufacturing and operating wind turbines used for generating electricity.

This “circulation control” aerodynamic technology could allow the wind turbines to produce significantly more power than current devices at the same wind speed.

Research aimed at adapting circulation control technology to wind turbine blades will be conducted by a California company, PAX Streamline, in collaboration with the Georgia Institute of Technology. The two-year project, which will lead to construction of a demonstration pneumatic wind turbine, will be supported by a $3 million grant from the Advanced Research Projects Agency-Energy – the federal energy research and development organization also known as ARPA-E.

“Our goal will be to make generation of electricity from wind turbines less expensive by eliminating the need for the complex blade shapes and mechanical control systems used in current turbines,” said Robert J. Englar, principal research engineer at the Georgia Tech Research Institute (GTRI). “Because these new blades would operate effectively at lower wind speeds, we could potentially open up new geographic areas to wind turbine use. Together, these advances could significantly expand the generation of electricity from wind power in the United States.”

Circulation control techniques use compressed air blown from slots on the trailing edges of wings or hollow blades to change the aerodynamic properties of those wings or blades. In aircraft, circulation control wings improve lift, allowing aircraft to fly at much lower speeds – and take off and land in much shorter distances. In helicopter rotor blades, the technique – also known as the “circulation control rotor” – both simplifies the rotor and its control system and produces more lift.

The ARPA-E project will apply the technique to controlling the aerodynamic properties of wind turbine blades, which now must be made in complicated shapes and controlled by complex control mechanisms to extract optimal power from the wind.

“The speed at which these turbines would begin to operate will be much lower than with existing blades,” said Englar. “Places that wind maps have previously indicated would not be suitable locations for wind turbines may now be useful. The blown technology should also allow safe operation at higher wind speeds and in wind gusts that would cause existing turbines to be shut down to prevent damage. ”

Because they would produce more aerodynamic force, torque and power than comparable blades, these blown structures being developed by Georgia Tech and PAX could also allow a reduction in the size of the wind turbines.

“If you need a specific amount of wind force and torque generated by the wind turbine to generate electricity, we could get that force and torque from a smaller blade area because we’d have more powerful lifting surfaces,” Englar explained.

A major question awaiting study is how much energy will be required to produce the compressed air the blown blades need to operate. Preliminary studies done by Professor Lakshmi Sankar in Georgia Tech’s School of Aerospace Engineering suggest that wind turbines with the blown blades could produce 30 to 40 percent more power than conventional turbines at the same wind speed – even when the energy required to produce the compressed air is subtracted from the total energy production.

The new turbine blades will be developed at GTRI’s low-speed wind tunnel research facility located in Cobb County, north of Atlanta.

Officials of PAX Streamline see the circulation control technology as key to the development of a new generation of turbines that could significantly lower the cost of producing electricity from the wind.

“This is a significant validation of our established turbine R&D,” said PAX CEO John Webley. “With this grant, we can rapidly accelerate our research program and, within the next two years, deploy a prototype wind turbine which demonstrates our game-changing technology.”

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>