Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Better Route to Xylan

Joint BioEnergy Institute Researchers Find New Access to Abundant Biomass for Advanced Biofuels

After cellulose, xylan is the most abundant biomass material on Earth, and therefore represents an enormous potential source of stored solar energy for the production of advance biofuels.

A major roadblock, however, has been extracting xylan from plant cell walls. Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have taken a significant step towards removing this roadblock by identifying a gene in rice plants whose suppression improves both the extraction of xylan and the overall release of the sugars needed to make biofuels.

The newly identified gene – dubbed XAX1 – acts to make xylan less extractable from plant cell walls. JBEI researchers, working with a mutant variety of rice plant – dubbed xax1 – in which the XAX1 gene has been “knocked-out” found that not only was xylan more extractable, but saccharification – the breakdown of carbohydrates into releasable sugars – also improved by better than 60-percent. Increased saccharification is key to more efficient production of advanced biofuels.

“In identifying XAX1 as a xylan biosynthetic protein, the first enzyme known to be specific to grass xylan synthesis, we’ve shown that xylan can be modified so as to increase saccharification,” says Henrik Scheller, who heads JBEI’s Feedstocks Division and directs its Cell Wall Biosynthesis group, and also holds an appointment with Lawrence Berkeley National Laboratory (Berkeley Lab). “Our findings provide us with new insights into xylan synthesis and how xylan substitutions may be modified for increased biofuel generation.”

Scheller is a co-author of a paper describing this work that has been published by the Proceedings of the National Academy of Sciences (PNAS). The paper is titled “XAX1 from glycosyltransferase family 61 mediates Xylosyl transfer to rice xylan.” The corresponding author is Pamela Ronald, who holds joint appointments with JBEI and the University of California (UC) Davis. Other authors were Dawn Chiniquy, Vaishali Sharma, Alex Schultink, Edward Baidoo, Carsten Rautengarten, Kun Cheng, Andrew Carroll, Peter Ulvskov, Jesper Harholt, Jay Keasling and Markus Pauly.

As a source of transportation energy, advanced biofuels synthesized from lignocellulosic biomass in grasses and other non-food plants have the potential to replace fossil fuels that are responsible for the annual release of nearly 9 billion metric tons of excess carbon into the atmosphere. Unlike ethanol made from corn or sugarcane, advanced biofuels can be dropped into today’s vehicles with no impact on performance, and used in today’s infrastructures with no modifications required. Advanced biofuels are renewable and carbon-neutral, meaning their use does not add excess carbon to the atmosphere.

Xylan, like cellulose, is a major component of plant cell walls that serves as a valuable source of human and animal nutrition. Despite its importance, few of the enzymes that can synthesize xylan-type polysaccharides have been identified. It is believed that xylan plays an essential structural role in plant cell walls through cross-linking interactions with cellulose and other cell wall components.

“Xylan is of particular interest for the improvement of feedstocks for the generation of cellulosic biofuels, a currently expensive and inefficient process,” says Ronald.

“Xylan inhibits access of the enzymes that break down cellulose into sugars and is an additional substrate for cross-linking to lignin, all of which contributes to the recalcitrance of plant cell walls.”

Dawn Chiniquy was part of a research team that identified XAX1 as the first enzyme known to be specific to xylan synthesis in grasses.

To find genes important for grass xylan biosynthesis, Ronald, Scheller and their co-authors focused on the GT61 family of glycosyltransferases. GT61 enzymes have been identified through bioinformatics as being expanded in grasses and containing grass-specific subgroups. Working with rice plants, the standard plant model for studying grasses, they conducted a reverse genetics screen of 14 genes with insertional rice mutants that are highly expressed members of the GT61 family. This led them to the identification of a mutant plant they named xax1 because its mutation resulted in the function of the XAX1 being knocked-out.

“XAX1 adds a specific xylose sugar to the arabinose substitutions on the xylan chain that creates more cross-links between xylan and lignin, making the plant cell walls less amenable to the production of biofuels,” says Dawn Chiniquy, first author of the paper who is now with the Energy Biosciences Institute. “Without a functioning XAX1 gene, there were fewer cross-links with lignin, which made the xylan more extractable and also increased saccharification.”

Subsequent assays showed the rice xax1 mutant plants to be deficient in ferulic and coumaric acid, aromatic compounds whose residues on arabinose are known to promote cross-linking between xylan chains the lignin. On the down-side, the xax1 mutant did yield a dwarf phenotype, but Scheller says he and his colleagues have already found a way to avoid the dwarf phenotype.

“We can apply the same principle used to make rice plants more easily saccharified to bioenergy crops,” Scheller says. “With the ability to modify cross-linking between xylan and lignin by targeting a glycosyltransferase, we also now have a potentially important new biotechnological tool for grass biofuel feedstocks.”

This research was primarily funded by the DOE Office of Science.

JBEI is one of three Bioenergy Research Centers established by the DOE’s Office of Science in 2007. It is a scientific partnership led by Berkeley Lab and includes the Sandia National Laboratories, the University of California campuses of Berkeley and Davis, the Carnegie Institution for Science, and the Lawrence Livermore National Laboratory. DOE’s Bioenergy Research Centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale. For more, visit

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at

Lynn Yarris | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>