Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


3-D microscope opens eyes to prehistoric oceans and present-day resources

A University of Alberta research team has turned their newly developed 3-D microscope technology on ancient sea creatures and hopes to expand its use.

U of A engineering professor Dileepan Joseph and two graduate students produced a 3-D imaging system called Virtual Reflected-Light Microscopy. The technology consists of a regular optical microscope, a light source, a platform that moves the objects being photographed and software programs that extract shape and reflectance from images and transform this digital information into a 3-D image. To see the full effect on a computer screen viewers wear simple, paper framed 3-D glasses with red and cyan coloured lenses. Viewers also control a virtual light source, which they reposition using their web browser.

The test subjects used in the development of the VRLM were drilling core samples taken from beneath the floor of the Pacific Ocean. Joseph, Ph.D candidate Adam Harrison and master's student Cindy Wong produced 3-D images of ancient protozoa or microfossils that were mixed in with the sand and rock in the core samples.

Joseph says the VRLM gives geoscientists and computer programs in development much more information than simple images. The goal is to accelerate species identification of the tiny and numerous microfossils. Such identifications are used to date the rock from which the creatures are pulled. The microfossil species digitized by the U of A's VLRM prototype were found in rock known by geologists to be 60 million years old.

Geoscientists can use that kind of strata dating information in Earth sciences research and in the search for energy resources. The U of A researchers say there are multiple industrial and academic uses for their 3-D microscope technology.

The development of the VLRM technology is documented by the U of A researchers in the academic publication Journal of Microscopy.

Brian Murphy | EurekAlert!
Further information:

Further reports about: 3-D image Microscopy Pacific Ocean VLRM VRLM light source

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>