Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stock Market ‘Flash’ Crashes Now Can be Predicted, Thanks to Cornell Metric

02.12.2010
The kind of stock market “flash crash” that happened on May 26, 2010 is now predictable – and possibly preventable – thanks to a new formula developed by two Cornell professors and an investment expert.

The new “Volume-synchronized Probability of INformed trading” – or VPIN – metric looks at the imbalance of trade relative to the total volume of the market.

The developers: David Easley, Cornell professor of social sciences and chair of the Department of Economics, and Maureen O’Hara, professor of finance at Cornell’s Johnson Graduate School of Management, in collaboration with Marcos Lopes de Prado of Tudor Investments.

The metric identifies flow toxicity, which Easley and O’Hara have been researching for about 20 years.

“Flow toxicity refers to the risk that liquidity providers face when trading with traders who have better information than they do,” says Easley. The flow of orders “is considered toxic when traders are selling when they’d rather be buying, and buying when they’d rather be selling.”

Flash events occur when market makers suddenly stop trading in response to a high level of flow toxicity, resulting in a sudden drop of prices.

“All morning long on May 6 order flows were becoming increasingly unbalanced, and volumes were huge,” says O’Hara. “An hour or more before the flash crash our measure hit historic levels.”

The VPIN could prevent future flash crashes by giving market regulators warning of flow toxicity early enough that they could slowly adjust the market, says Easley. The metric could also give traders a way to hedge the risk of flash crashes, so traders don’t have to be as concerned with the value of their inventory plummeting.

O’Hara serves on the Joint Commodity Futures Trading Commission-Securities and Exchange Commission (CFTC-SEC) Advisory Committee on Emerging Regulatory Issues established after May 6.

“One of the problems that regulators face now is that markets are so fast, that regulating after the fact is really too late,” she says.

Both the CFTC and the Financial Industry Regulatory Authority economic advising board have expressed interest in the VPIN. Private firms, such as Tudor Investments, have also used O’Hara and Easley’s research to develop trading algorithms for high-frequency markets.

Easley, who is also a member of the Department of Information Science, recently co-authored “Networks, Crowds and Markets: Reasoning About a Highly Connected World” with Jon Kleinberg, Cornell professor of computer science.

“Measuring Flow Toxicity In A High Frequency World” appears online in the Social Science Research Network. (Originally published Oct. 21, 2010.) The complete paper can be found at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1695596

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Business and Finance:

nachricht How Strong Brands Translate into Money
15.11.2016 | Kühne Logistics University - Wissenschaftliche Hochschule für Logistik und Unternehmensführung

nachricht Demographic change depresses tax revenues
04.11.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>