Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical Storm Iselle Departs Hawaii While Julio Stays Well North

13.08.2014

The Tropical Rainfall Measuring Mission or TRMM satellite passed over Tropical Storm Iselle and gathered data on clouds and rainfall as it affected Hawaii.

Iselle was once a rather powerful category 4 hurricane in the East Pacific with sustained winds estimated at 120 knots (~138 mph) by the National Hurricane Center. Fortunately, a combination of southwesterly wind shear, drier air and cooler waters weakened Iselle considerably as it approached the Hawaiian Islands. 


Rainfall estimates for the period Aug. 4 to 11 for the Hawaiian Islands. Two swaths of heavier rain show the paths of Iselle and Julio. Iselle's rainfall totaled 60 to 80 mm (~3 inches, green) over the southeast coast of Hawaii and upwards of 120 mm (~5 inches, red) over Kauai.

Image Credit: SSAI/NASA, Hal Pierce

Although much weaker, Iselle still struck the southeast Kau coast of the Big Island of Hawaii as a rather strong tropical storm.  In fact Iselle, was the strongest and only the second tropical storm to hit the Big Island in over 50 years.  The center made landfall around 2:30 am HST on Friday, August 8, near Pahala with sustained winds of 60 mph.

The Big Island bore the brunt of the storm where downed trees and power lines left 25,000 people without power.  Currently, several days after the storm, around 8,000 are still without power on the island.  After hitting the Big Island, Iselle continued to track to the west-northwest keeping the center of circulation well south of the rest of the Hawaiian Islands, which mainly received just rain from Iselle's outer rainbands.  On Kauai, however, one woman was reported to have been swept away and drowned while hiking.

... more about:
»Hawaii »Hawaiian »Island »NASA »Space »TMPA »rainfall »satellite »tropical »winds

TRMM captured an image of Iselle on August 9 at 09:06 UTC (August 8 at 11:06 p.m. local time) as the center was passing well south of the far western islands of Kauai and Ni'ihau.  By that time, Iselle had been degraded to a tropical depression, and TRMM showed the exposed center of Iselle, which was devoid of any eyewall or even rain. There are several outer rainbands located only on the northeast side of the storm that were still effecting the western part of the state. 

Data from that same satellite over pass (orbit) was used to create a 3-D image of the storm looking north.   Areas in green show that much of the rain is relatively shallow with tops ranging from about 5 to 8 km, but there are isolated areas of higher tops associated with deeper penetrating individual convective cells embedded within the rainbands.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland a TRMM-based, near-real time Multi-satellite Precipitation data (TMPA) analysis was conducted that uses TRMM data to calibrate rainfall estimates from other satellites. The analysis expands the rainfall coverage of the TRMM satellite.  TMPA rainfall estimates were calculated to cover August 4 to 11 for the Hawaiian Islands and surrounding area.

  Two swaths of heavier rain showed the paths taken by Iselle and Julio, which formed a few days after Iselle and followed a path slightly more to the north.  Iselle's rainfall totals are on the order of 60 to 80 mm (~3 inches) over the southeast coast of Hawaii and upwards of 120 mm (~5 inches) over Kauai.  Locally, up to 14 inches of rain was reported in the higher elevations of the Big Island. 

Julio, which is now a tropical storm, is currently located well north of Oahu (about 500 miles from Honolulu) and expected to continue moving away from Hawaii and steadily weaken.

TRMM is a joint mission between NASA and the Japanese space agency JAXA.

Text credit:  Stephen Lang
SSAI/NASA Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/iselle-eastern-pacific-ocean/

Further reports about: Hawaii Hawaiian Island NASA Space TMPA rainfall satellite tropical winds

More articles from Earth Sciences:

nachricht Carbon dioxide fertilization greening Earth, study finds
27.04.2016 | NASA/Goddard Space Flight Center

nachricht Researchers discover fate of melting glacial ice in Greenland
26.04.2016 | University of Georgia

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>