Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tropical Storm Iselle Departs Hawaii While Julio Stays Well North


The Tropical Rainfall Measuring Mission or TRMM satellite passed over Tropical Storm Iselle and gathered data on clouds and rainfall as it affected Hawaii.

Iselle was once a rather powerful category 4 hurricane in the East Pacific with sustained winds estimated at 120 knots (~138 mph) by the National Hurricane Center. Fortunately, a combination of southwesterly wind shear, drier air and cooler waters weakened Iselle considerably as it approached the Hawaiian Islands. 

Rainfall estimates for the period Aug. 4 to 11 for the Hawaiian Islands. Two swaths of heavier rain show the paths of Iselle and Julio. Iselle's rainfall totaled 60 to 80 mm (~3 inches, green) over the southeast coast of Hawaii and upwards of 120 mm (~5 inches, red) over Kauai.

Image Credit: SSAI/NASA, Hal Pierce

Although much weaker, Iselle still struck the southeast Kau coast of the Big Island of Hawaii as a rather strong tropical storm.  In fact Iselle, was the strongest and only the second tropical storm to hit the Big Island in over 50 years.  The center made landfall around 2:30 am HST on Friday, August 8, near Pahala with sustained winds of 60 mph.

The Big Island bore the brunt of the storm where downed trees and power lines left 25,000 people without power.  Currently, several days after the storm, around 8,000 are still without power on the island.  After hitting the Big Island, Iselle continued to track to the west-northwest keeping the center of circulation well south of the rest of the Hawaiian Islands, which mainly received just rain from Iselle's outer rainbands.  On Kauai, however, one woman was reported to have been swept away and drowned while hiking.

... more about:
»Hawaii »Hawaiian »Island »NASA »Space »TMPA »rainfall »satellite »tropical »winds

TRMM captured an image of Iselle on August 9 at 09:06 UTC (August 8 at 11:06 p.m. local time) as the center was passing well south of the far western islands of Kauai and Ni'ihau.  By that time, Iselle had been degraded to a tropical depression, and TRMM showed the exposed center of Iselle, which was devoid of any eyewall or even rain. There are several outer rainbands located only on the northeast side of the storm that were still effecting the western part of the state. 

Data from that same satellite over pass (orbit) was used to create a 3-D image of the storm looking north.   Areas in green show that much of the rain is relatively shallow with tops ranging from about 5 to 8 km, but there are isolated areas of higher tops associated with deeper penetrating individual convective cells embedded within the rainbands.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland a TRMM-based, near-real time Multi-satellite Precipitation data (TMPA) analysis was conducted that uses TRMM data to calibrate rainfall estimates from other satellites. The analysis expands the rainfall coverage of the TRMM satellite.  TMPA rainfall estimates were calculated to cover August 4 to 11 for the Hawaiian Islands and surrounding area.

  Two swaths of heavier rain showed the paths taken by Iselle and Julio, which formed a few days after Iselle and followed a path slightly more to the north.  Iselle's rainfall totals are on the order of 60 to 80 mm (~3 inches) over the southeast coast of Hawaii and upwards of 120 mm (~5 inches) over Kauai.  Locally, up to 14 inches of rain was reported in the higher elevations of the Big Island. 

Julio, which is now a tropical storm, is currently located well north of Oahu (about 500 miles from Honolulu) and expected to continue moving away from Hawaii and steadily weaken.

TRMM is a joint mission between NASA and the Japanese space agency JAXA.

Text credit:  Stephen Lang
SSAI/NASA Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:

Further reports about: Hawaii Hawaiian Island NASA Space TMPA rainfall satellite tropical winds

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>