Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thousands of Natural Gas Leaks Discovered in Boston

23.11.2012
The City of Boston is riddled with more than 3,000 leaks from its aging natural-gas pipeline system, according to a new study by researchers at Boston (BU) and Duke Universities.
Their findings appear this week in the online edition of the peer-reviewed journal Environmental Pollution [Phillips, N.G., et al., Mapping urban pipeline leaks: Methane leaks across Boston, Environmental Pollution (2012), http://dx.doi.org/10.1016/j.

Nathan Phillips, Boston University

Image showing relative volume of methane leaks at various locations around Boston.

envpol.2012.11.003].

The new study comes in the wake of devastating fires fueled by natural gas during Hurricane Sandy. Potential damage to gas pipeline pressure regulators, caused by flooding in Hurricane Sandy, has raised ongoing safety concerns in New York and New Jersey.

The researchers report finding 3,356 separate natural gas leaks under the streets of Boston. “While our study was not intended to assess explosion risks, we came across six locations in Boston where gas concentrations exceeded the threshold above which explosions can occur,” said Nathan Phillips, associate professor in BU’s Department of Earth and Environment and co-author of the study.

Nationally, natural gas pipeline failures cause an average of 17 fatalities, 68 injuries, and $133M in property damage annually, according to the U.S. Pipeline and Hazardous Materials Safety Administration. In addition to the explosion hazard, natural gas also poses a major environmental threat: Methane, the primary ingredient of natural gas, is a powerful greenhouse gas that degrades air quality. Leaks in the United States contribute to $3 billion of lost and unaccounted for natural gas each year.

“Repairing these leaks will improve air quality, increase consumer health and safety, and save money,” said co-author Robert B. Jackson, Nicholas Professor of Global Environmental Change at Duke. “We just have to put the right financial incentives into place.”

Phillips and Jackson’s teams collaborated with industry partners Robert Ackley of Gas Safety, Inc., and Eric Crosson of Picarro, Inc., on the study. They mapped the gas leaks under Boston using a new, high-precision methane analyzer installed in a GPS-equipped car. Driving all 785 road miles within city limits, the researchers discovered 3,356 leaks.

The leaks were distributed evenly across neighborhoods and were associated with old cast-iron underground pipes, rather than neighborhood socioeconomic indicators. Levels of methane in the surface air on Boston’s streets exceeded fifteen times the normal atmospheric background value.

Like Boston, other cities with aging pipeline infrastructure may be prone to leaks. The researchers recommend coordinated gas-leaks mapping campaigns in cities where the infrastructure is deemed to be at risk. The researchers will continue to quantify the health, safety, environmental, and economic impacts of the leaks, which will be made available to policymakers and utilities as they work to replace and repair leaking natural gas pipeline infrastructure.

Lucy Hutyra, Assistant Professor and Max Brondfield, technician, worked with Phillips on this study at Boston University. At Duke, PhD student Adrian Down, postdoctoral researcher Kaiguang Zhao, and research scientist Jon Karr assisted Jackson with his research.

The study was supported by the Barr Foundation, Conservation Law Foundation, National Science Foundation, Picarro, Inc., Boston University and Duke University.

About Boston University

Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research.

Link to article:
http://www.sciencedirect.com/science/article/pii/S0269749112004800
Author contacts:
Nathan Phillips, associate professor
Department of Earth & Environment
Boston University
(617) 353-2841
nathan@bu.edu
Robert B. Jackson, professor
Nicholas School of the Environment
Duke University
(919) 660-7408
jackson duke.edu

Sara Rimer | Newswise Science News
Further information:
http://www.bu.edu

More articles from Earth Sciences:

nachricht Earth Day: Disease spread among species is predictable
24.04.2015 | National Science Foundation

nachricht Warming climate may release vast amounts of carbon from long-frozen Arctic soils
24.04.2015 | University of Georgia

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>