Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellite Tracks Tropical Cyclone Lehar Moving Toward India

27.11.2013
Tropical cyclone Lehar, located in the Bay of Bengal, continues to gain intensity while heading toward the same area of India where a much weaker tropical cyclone Helen recently came ashore. NASA's TRMM satellite passed over Lehar and measured rainfall and cloud heights to give scientists an understanding of how the storm is behaving.

NASA's Tropical Rainfall Measuring Mission satellite called TRMM flew above tropical cyclone Lehar on November 26, 2013 at 0307 UTC/Nov. 25 at 10:07 p.m. EST and captured rainfall data. Rainfall rates occurring in the storm were derived from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments.


On Nov. 26, 2013. NASA's TRMM satellite saw that rain was falling at a rate greater than 64 mm/~2.5 inches per hour in Lehar's center and in a band of intense rain wrapping around Lehar's northwestern side.
Image Credit: NASA/SSAI, Hal Pierce

That data was taken and overlaid on an enhanced visible/infrared image from TRMM's Visible and InfraRed Scanner (VIRS) at NASA's Goddard Space Flight Center in Greenbelt, Md. to create a total picture of rainfall within the tropical cyclone. The TRMM instruments found that rain was falling at a rate greater than 64 mm/~2.5 inches per hour in Lehar's center and in a band of intense rain wrapping around Lehar's northwestern side. Some strong thunderstorms within Lehar were reaching heights above 15.25 km/~9.5 miles.

Warnings are already in effect in India. Northern Andhra Pradesh and southern Odisha are expected to feel Lehar's effects on Wednesday, November 27, when winds are expected to reach up to 91.7 knots/105.6 mph/170 kph.

At 1500 UTC/10 a.m. EST on November 26, Tropical Cyclone Lehar's maximum sustained winds were near 75 knots/86.1 mph/138.9 kph. Tropical-storm-force winds extend up to 100 nautical miles/115.1 miles/185.2 km from the center of the storm or 200 miles/230.2 miles/370.5 km in diameter. Lehar's center was located about 471 nautical miles southeast of Visakhapatnam, India, near 12.9 north and 88.6 east. Lehar was moving to the west-northwest at 9 knots/10.3 mph/16.6 km.

The Joint Typhoon Warning Center or JTWC predicts that Lehar's sustained wind speeds will reach 95 knots/~109 mph on November 27, 2013 and then decrease to about 85 knots/~98 mph before hitting India's east-central coast.

Text credit: Harold F. Pierce
SSAI/NASA Goddard Space Flight Center

Harold F. Pierce | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/lehar-northern-indian-ocean/

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>