Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic Sea Ice Update: Unlikely To Break Records, But Continuing Downward Trend

26.08.2013
The melting of sea ice in the Arctic is well on its way toward its annual "minimum," that time when the floating ice cap covers less of the Arctic Ocean than at any other period during the year.

While the ice will continue to shrink until around mid-September, it is unlikely that this year’s summer low will break a new record. Still, this year’s melt rates are in line with the sustained decline of the Arctic ice cover observed by NASA and other satellites over the last several decades.

“Even if this year ends up being the sixth- or seventh-lowest extent, what matters is that the 10 lowest extents recorded have happened during the last 10 years,” said Walt Meier, a glaciologist with NASA’s Goddard Space Flight Center in Greenbelt, Md. “The long-term trend is strongly downward.”

The icy cover of the Arctic Ocean was measured at 2.25 million square miles (5.83 million square kilometers) on Aug. 21. For comparison, the smallest Arctic sea ice extent on record for this date, recorded in 2012, was 1.67 million square miles (4.34 million square kilometers), and the largest recorded for this date was in 1996, when ice covered 3.16 millions square miles (8.2 million square kilometers) of the Arctic Ocean.

Watching the summertime dynamics of the Arctic ice cap has gained considerable attention in recent years as the size of the minimum extent has been diminishing – rapidly. On Sept.16, 2012, Arctic sea ice reached its smallest extent ever recorded by satellites at 1.32 million square miles (3.41 million square kilometers). That is about half the size of the average extent from 1979 to 2010.

Sea ice extent is a measurement of the area of the Arctic Ocean where ice covers at least 15 percent of the ocean surface. For additional information about the evolution of the sea ice cover, scientists also study the sea ice "area," which discards regions of open water among ice floes and only takes into account the parts of the Arctic Ocean completely covered by ice. On Aug. 21, 2013, the Arctic sea ice area was 1.98 million square miles (5.12 million square kilometers).

This year’s melting season included a fast retreat of the sea ice during the first half of July. But low atmospheric pressures and clouds over the central Arctic kept temperatures up north cooler than average, slowing down the plunge.

With about three weeks of melting left, the summer minimum in 2013 is unlikely to be a record low, said Joey Comiso, senior scientist at Goddard and coordinating lead author of the Cryosphere Observations chapter of the upcoming report of the Intergovernmental Panel on Climate Change.

“But average temperatures in the Arctic fluctuate from one week to another, and the occurrence of a powerful storm in August, as happened in 2012, could cause the current rate of decline to change significantly,” Comiso said.

This year, the Arctic has witnessed a few summer storms, but none of them as intense as the cyclone that took place in August 2012.

“Last year’s storm went across an area of open water and mixed the smaller pieces of ice with the relatively warm water, so it melted very rapidly,” Meier said. “This year, the storms hit in an area of more consolidated ice. The storms this year were more typical summer storms; last year’s was the unusual one.”

The Arctic sea ice cap has significantly thinned over the past decade and is now very vulnerable to melt, Comiso said. The multiyear ice cover, consisting of thicker sea ice that has survived at least two summers, has declined at an even faster rate than younger, thinner ice.

Meier said that a thinner, seasonal ice cover might behave more erratically in the summer than multiyear ice.

“First-year ice has a thickness that is borderline: It can melt or not depending on how warm the summer temperatures are, the prevailing winds, etcetera,” Meier said. “This year’s conditions weren’t super-favorable for losing ice throughout spring and summer; last year they were. Whereas with multiyear ice, it takes unusual warm conditions to melt it, which is what we’ve seen in the most recent years.”

On the opposite side of the planet, Antarctic sea ice, which is in the midst of its yearly growing cycle, is heading toward the largest extent on record, having reached 7.45 million square miles (19.3 million square kilometers) on Aug. 21. In 2012, the extent of Antarctic sea ice for the same date was 7.08 million square miles (18.33 million square kilometers). The phenomenon, which appears counter-intuitive but reflects the differences in environment and climate between the Arctic and Antarctica, is currently the subject of many research studies. Still, the rate at which the Arctic is losing sea ice surpasses the speed at which Antarctic sea ice is expanding.

The sea ice minimum extent analysis produced at Goddard – one of many satellite-based scientific analyses of sea ice cover – is compiled from passive microwave data from NASA's Nimbus-7 satellite, which operated from late October 1978 to August 1987, and the U.S. Department of Defense's Defense Meteorological Satellite Program, which has been used to extend the Nimbus 7 sea ice record onwards from August 1987. The record, which began in November 1978, shows an overall downward trend of 14.1 percent per decade in the size of the minimum summer extent, a decline that accelerated after 2007.

Maria-José Viñas
NASA's Earth Science News Team

Maria-José Viñas | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/arctic-sea-ice-update-unlikely-to-break-records-but-continuing-downward-trend/#.Uhe0_nf3Mg8

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>