Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

47-Million-year-old Fossil Could Shed Light on Primate Family Tree

27.05.2009
A 47-million-year-old primate fossil, a purported "missing link" between primates and humans, was unveiled this week in New York. The fossil, formally called Darwinius masillae but nicknamed Ida, could, due to it being an essentially whole skeleton, shed light on the construction of the primate family tree, says an expert on primate evolution at Washington University in St. Louis.

Tab Rasmussen, Ph.D., professor of anthropology in Arts & Sciences, studies primate evolution by drawing on two major lines of evidence: the fossil record and the comparative study of living primates.

One goal of this research is to trace the actual course of primate evolution. More importantly, detailed studies of primate evolution can provide insight into the evolutionary process itself. He has been particularly interested in major evolutionary transitions, such as primate origins and anthropoid origins.

Rasmussen explains the significance of the find in the following piece:

The new specimen of Darwinius is truly remarkable. Over the last 150 years of paleontological collecting around the world, thousands of fossil primates have been found representing many hundreds of species, but the new find is the first complete skeleton. Usually we are lucky to find a few fragments of jaws or teeth, or isolated limb bones. Only infrequently do we get partial limbs or multiple bones from a single individual. In Darwinius, we have essentially the whole skeleton, with impressions of body outlines and stomach contents as well.

Some of the bones least likely to be found and properly identified from typical fossil sites are small bones of the feet, hands, fingers, tail, and so forth. In Darwinius, we can judge precisely the proportions and arrangements of these parts. Hands, feet and tail are critical for active arboreal movements, and Darwinius shows us that it had prehensile hands, powerful grasping feet, and a long, counterbalancing tail, all contributing to the efficiency of arboreal running and leaping.

Because Darwinius died at a immature age, the specimen is also very helpful in reconstructing the life history of the animal. The sequence in which deciduous (baby) teeth and adult teeth erupt allows researchers to estimate the rate of development, whether an animal grew up fast like a rabbit, or slow like a human being. It turns out Darwinius had a medium growth rate, slower than most other mammals its size, but faster than modern apes. In this way, it was similar to squirrel monkeys and some lemurs. The individual represented by the new fossil had broken its wrist before dying, possibly from a fall. The stomach contents reveal fruit and leaves.

Darwinius lived at a time (47 million years ago) not too long after the very earliest true primates appear in the fossil record. It provides us with the best look ever at such early primates. The world was much warmer then, and tropical zones extended far north into North America, Europe and Asia. The very widespread Eocene rainforests of the time held a remarkable diversity of primates. The Eocene was truly the golden age of primate evolution, judged by global diversity and abundance.

Darwinius is also of interest regarding the construction of the primate family tree. Among living primates, there are three major groups. (1) Tarsiers are small, nocturnal primates of Southeast Asia, but in the past they were very diverse and widespread. One family of tarsioid primates, the Omomyidae, is well known from the Eocene. (2) Strepsirhini, or lemur-like primates, include nocturnal primates of Africa and Asia, and a considerable diversity of nocturnal and diurnal primates in Madagascar. The earliest members of this group are known from the Eocene of Africa. (3) The third group, Anthropoidea, includes monkeys, apes, and humans. Darwinius is clearly not closely related to the tarsiers or the true lemurs. It lacks any shared specializations with either of these groups that would provide evidence of a close evolutionary kinship. The authors of the report suggest that Darwinius may be a very primitive relative of anthropoids. The tie cannot be established with great confidence at this time. Among the very earliest primates known, Darwinius is a reasonable candidate as our earliest anthropoid kin.

Another possibility regarding the evolutionary tree is that Darwinius is not specially linked to any of the lineages that live today. There is a good possibility that the true anthropoid ancestors lived in Africa during the Eocene. A large number of anthropoid fossils have been found there at younger dates.

One of the main areas of controversy about Darwinius has to do with this hypothetical tie to Anthropoidea. Some researchers feel that early tarsioid primates are better candidates for anthropoid ancestry. Most of them favor an Asian genus called Eosimias as a potential anthropoid. One problem with this idea is that Eosimias is very poorly known, being represented only by teeth and jaws, so that hypothesis is still very insecure. Another problem is that tarsioid primates are very specialized in their limbs and skulls early in the Eocene, probably too much so to have given rise to more generalized anthropoids.

Trying to reconstruct the earliest parts of the primate evolutionary tree is by its nature very difficult. This is because early primates were more primitive than modern ones. Also, fossil primates, even one as complete as Darwinius, cannot provide us with information about all anatomical soft tissues. It will not be possible to retrieve DNA from Darwinius.

Tab Rasmussen
Professor of Anthropology
Washington University in St. Louis
(314) 935-4844
dtrasmus@wustl.edu

Tab Rasmussen | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>