Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 NASA satellites spy Alberto, the Atlantic Ocean season's first tropical storm

22.05.2012
The first tropical storm of the Atlantic Ocean hurricane season formed off the coast of South Carolina on Saturday, May 19, 2012 at 5 p.m. EDT, and NASA satellites were immediately keeping track of it. NASA's TRMM and Aqua satellites have provided a visible look at the compact storm and its rainfall rates.
Tropical Storm Alberto formed 13 days before the official start of hurricane season (June 1) and ramped up quickly. Alberto's maximum sustained winds jumped to 45 mph after it developed. It was located about 140 miles east-southeast of Charleston, South Carolina, and would then take a southerly track.

On that same day, NASA's Tropical Rainfall Measuring Mission (TRMM) satellite passed over Alberto. TRMM data showed a large area of moderate to heavy rainfall with a small area of heavy rainfall located near the center of the forming tropical cyclone. Data from two instruments aboard TRMM provided the rainfall data: the Microwave Imager (TMI) and Precipitation Radar (PR) data captured at 12 minutes after midnight EDT.

On Sunday, May 20, Tropical Storm Alberto had strengthened. A Tropical Storm Watch was posted and later dropped for Savannah River to South Santee River, South Carolina. At that time, Alberto's maximum winds were near 50 mph. By mid-day, Alberto's center was located near 31.7 North and 79.3 West, about 95 miles south-southeast of Charleston, S.C. Alberto was moving west-southwest at 6 mph. Pressure 998 millibars. By 11 p.m. EDT on Sunday, May 20, Alberto appeared to become less organized and weakened. Alberto's maximum sustained winds dropped to 40 mph (65 kph) and it was centered about 85 miles (135 km) east-northeast of St. Augustine, Florida.
The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard NASA's Aqua satellite captured a stunning visible image of Tropical Storm Alberto off the Georgia coast on May 20 at 18:30 UTC (3:30 p.m. EDT) that showed it is a compact storm with a tight center of circulation.

On Monday, May 21, Tropical Storm Alberto was still moving southeast and is about 100 miles east-southeast of St. Augustine Florida. Alberto is causing dangerous surf conditions, including rip currents along the Georgia, South Carolina and northeast Florida coastlines.

The National Hurricane Center forecast calls for Alberto to remain off-shore from Georgia and South Carolina, and then turn to the east and then to the northeast. Although there is no expected change in the strength of Alberto as it turns, the tropical storm is churning up the waters along the coasts of South Carolina, Georgia and northern Florida, causing rough seas and rip tides.

On the day Alberto formed, May 19, NASA's TRMM satellite captured a look at the rainfall rates within the first tropical storm of the Atlantic season. TRMM data showed a large area of moderate to heavy rainfall (falling at a rate of 2 inches/50 mm per hour seen in red) with a small area of heavy rainfall located near the center of the forming tropical cyclone. Light to moderate rainfall was falling at a rate between .78 inches and 1.57 inches per hour (20 to 40 mm). Credit: NASA/TRMM, Hal Pierce

IMAGES: http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Alberto.html

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>