Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 NASA satellites spy Alberto, the Atlantic Ocean season's first tropical storm

22.05.2012
The first tropical storm of the Atlantic Ocean hurricane season formed off the coast of South Carolina on Saturday, May 19, 2012 at 5 p.m. EDT, and NASA satellites were immediately keeping track of it. NASA's TRMM and Aqua satellites have provided a visible look at the compact storm and its rainfall rates.
Tropical Storm Alberto formed 13 days before the official start of hurricane season (June 1) and ramped up quickly. Alberto's maximum sustained winds jumped to 45 mph after it developed. It was located about 140 miles east-southeast of Charleston, South Carolina, and would then take a southerly track.

On that same day, NASA's Tropical Rainfall Measuring Mission (TRMM) satellite passed over Alberto. TRMM data showed a large area of moderate to heavy rainfall with a small area of heavy rainfall located near the center of the forming tropical cyclone. Data from two instruments aboard TRMM provided the rainfall data: the Microwave Imager (TMI) and Precipitation Radar (PR) data captured at 12 minutes after midnight EDT.

On Sunday, May 20, Tropical Storm Alberto had strengthened. A Tropical Storm Watch was posted and later dropped for Savannah River to South Santee River, South Carolina. At that time, Alberto's maximum winds were near 50 mph. By mid-day, Alberto's center was located near 31.7 North and 79.3 West, about 95 miles south-southeast of Charleston, S.C. Alberto was moving west-southwest at 6 mph. Pressure 998 millibars. By 11 p.m. EDT on Sunday, May 20, Alberto appeared to become less organized and weakened. Alberto's maximum sustained winds dropped to 40 mph (65 kph) and it was centered about 85 miles (135 km) east-northeast of St. Augustine, Florida.
The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard NASA's Aqua satellite captured a stunning visible image of Tropical Storm Alberto off the Georgia coast on May 20 at 18:30 UTC (3:30 p.m. EDT) that showed it is a compact storm with a tight center of circulation.

On Monday, May 21, Tropical Storm Alberto was still moving southeast and is about 100 miles east-southeast of St. Augustine Florida. Alberto is causing dangerous surf conditions, including rip currents along the Georgia, South Carolina and northeast Florida coastlines.

The National Hurricane Center forecast calls for Alberto to remain off-shore from Georgia and South Carolina, and then turn to the east and then to the northeast. Although there is no expected change in the strength of Alberto as it turns, the tropical storm is churning up the waters along the coasts of South Carolina, Georgia and northern Florida, causing rough seas and rip tides.

On the day Alberto formed, May 19, NASA's TRMM satellite captured a look at the rainfall rates within the first tropical storm of the Atlantic season. TRMM data showed a large area of moderate to heavy rainfall (falling at a rate of 2 inches/50 mm per hour seen in red) with a small area of heavy rainfall located near the center of the forming tropical cyclone. Light to moderate rainfall was falling at a rate between .78 inches and 1.57 inches per hour (20 to 40 mm). Credit: NASA/TRMM, Hal Pierce

IMAGES: http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Alberto.html

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>