Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

StemBANCC at the start – funded with EUR 55.6 M

18.12.2012
StemBANCC will start yet this year – an international research project involving 25 academic partners and 11 partners from the pharmaceutical industry.
Funded with a total budget of EUR 55.6 M, StemBANCC intends to develop new therapies for Alzheimer’s, Parkinson’s, diabetes and other major diseases. The 5-year project relies on knowledge from stem cell research, for improved active ingredients, and it will build a platform with a total of 1500 pluripotent stem cell lines, also known as induced pluripotent stem cells or iPS. For this iPS technology, the Nobel Prize in Medicine was awarded this year. NMI’s contribution to StemBANCC is its expertise in the field of electro-physiology.

Headed by Prof. Dr. Elke Guenther, head of the cell biology division at the NMI, her team of researchers is responsible for characterising the functioning of the stem cells and their pharmacological validation.

Currently, many drugs fail rather late in the drug development process because the tests used in the earlier stages of drug development simply do not reflect what happens in real life when the drug is administered in patients. This is partly because these early tests rely heavily on animal cells, and when human cells are used, they have often been extensively modified to survive in culture and so no longer behave naturally. Those working in drug research and development therefore urgently need a good supply of cells that more accurately mimic what happens in the human body.

The power of pluripotency
Most adult cells can only divide to produce other cells of the same type – for example, skin cells can only make other skin cells, and blood cells can only make other blood cells. Only embryonic stem cells are ‘pluripotent’, i.e. able to give rise to all the different kinds of cell that make up the human body. However, in recent years researchers have developed a way of reprogramming ordinary adult cells to create so-called induced pluripotent stem (iPS) cells. Like embryonic stem cells, iPS cells are able to generate any kind of cell; as such, they offer researchers a good supply of different kinds of human cell that can be used in research and drug development. The research resulting in the creation of the first iPS cells was a major scientific breakthrough that won scientists John Gurdon and Shinya Yamanaka the 2012 Nobel Prize in Physiology or Medicine.

A unique resource

STEMBANCC’s goal is to generate 1 500 iPS cell lines from 500 people, characterise them in terms of their genetic, protein, and metabolic profiles, and make them available to researchers. All cell lines will also undergo a rigorous quality check.

The raw materials for the project will be largely skin and blood samples taken from patients with certain diseases, people who display adverse reactions to drugs, and healthy individuals. The collection of these samples will be carried out with the individuals’ informed consent and in line with strict ethical standards.

There will be a strong focus on peripheral nervous system disorders (especially pain); central nervous system disorders (e.g. dementias); neurodysfunctional diseases (e.g. migraine, autism, schizophrenia, and bipolar disorder); and diabetes. The project will also investigate the use of human iPS cells for toxicology testing; here the team will use the iPS cells to generate liver, heart, nerve and kidney cells.

Ultimately STEMBANCC will be a source of well-characterised, patient-derived iPS cells that will help researchers study diseases, develop new treatments, and test the efficacy and safety of new drugs.

The Innovative Medicines Initiative
The Innovative Medicines Initiative (IMI) is Europe's largest public-private initiative aiming to speed up the development of better and safer medicines for patients. IMI supports collaborative research projects and builds networks of industrial and academic experts in order to boost pharmaceutical innovation in Europe. IMI is a joint undertaking between the European Union and the pharmaceutical industry association EFPIA. www.imi.europa.eu

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n°115439, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution.

Dr. Nadja Gugeler | idw
Further information:
http://www.nmi.de/
http://www.biochipnet.com/

More articles from Awards Funding:

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>