Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-pressure compound could be key to hydrogen-powered vehicles

A hydrogen-rich compound discovered by Stanford researchers is packed with promise of helping overcome one of the biggest hurdles to using hydrogen for fuel--namely, how do you stuff enough hydrogen into a volume that is small enough to be portable and practical for powering a car?

The newly discovered material is a high-pressure form of ammonia borane, a solid material which itself is already imbued with ample hydrogen. By working with the parent material at high pressure in an atmosphere artificially enriched with hydrogen, the scientists were able to ratchet up the hydrogen content of the material by roughly 50 percent.

"Including the hydrogen already stored in ammonia borane, this new material can store around 30 weight percent in total," said Yu Lin, lead author of a paper describing the work that was published this week in the online edition of Proceedings of the National Academy of Sciences.

The Department of Energy has set a target for hydrogen-powered vehicles of having an on-board storage system able to store 9 percent, by weight, of hydrogen in 2015. The new compound, called ammonia borane-hydrogen, contains more than triple that amount.

But the fly in the hydrogen is that the sought-after storage system must function at ambient pressure and temperature conditions. The process Lin used to get the added hydrogen into the ammonia borane has to take place at a minimum pressure that is approximately 60,000 times the usual pressure at the surface of the Earth.

"For energy applications, we need to stabilize the material near ambient conditions," said Lin, a graduate student in geological and environmental sciences. Currently, most hydrogen-powered machines use either compressed hydrogen gas or liquid hydrogen, which needs to be maintained at high pressure or very low temperature, respectively, relative to ambient temperature and pressure. These methods have associated safety concerns in the case of compressed hydrogen and require significant energy for cooling in the case of liquid hydrogen.

There is currently no material that satisfies all of the requirements for on-board fuel storage for hydrogen-powered vehicles, according to Lin, who is working with Wendy Mao, assistant professor of geological and environmental sciences at Stanford and a co-author of the paper.

"If the material can be stabilized at or near ambient conditions with a large amount of hydrogen content, then I think it will be very promising," Lin said.

There are potentially several ways to help stabilize the compound under normal temperature and pressure conditions. One idea is that there might be some "alternative chemical paths, like adding some catalyst to try to stabilize the system," Lin said.

If Lin and Mao succeed, ammonia borane could move one step closer to becoming an everyday storage material for hydrogen. Also closer to a reality would be scientists' and environmentalists' dream of powering cars with oxygen from the air and hydrogen from the fuel cell, while pumping out only water from the exhaust pipe.

Ho-kwang Mao, senior staff scientist at the Geophysical Laboratory at the Carnegie Institution of Washington, also participated in the research and is a co-author of the PNAS paper. Wendy Mao is also an assistant professor in the photon science department at SLAC National Accelerator Laboratory at Stanford.

The research was funded by the Department of Energy through the Stanford Institute for Materials and Energy Science.

Louis Bergeron | EurekAlert!
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>