Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-pressure compound could be key to hydrogen-powered vehicles

12.05.2009
A hydrogen-rich compound discovered by Stanford researchers is packed with promise of helping overcome one of the biggest hurdles to using hydrogen for fuel--namely, how do you stuff enough hydrogen into a volume that is small enough to be portable and practical for powering a car?

The newly discovered material is a high-pressure form of ammonia borane, a solid material which itself is already imbued with ample hydrogen. By working with the parent material at high pressure in an atmosphere artificially enriched with hydrogen, the scientists were able to ratchet up the hydrogen content of the material by roughly 50 percent.

"Including the hydrogen already stored in ammonia borane, this new material can store around 30 weight percent in total," said Yu Lin, lead author of a paper describing the work that was published this week in the online edition of Proceedings of the National Academy of Sciences.

The Department of Energy has set a target for hydrogen-powered vehicles of having an on-board storage system able to store 9 percent, by weight, of hydrogen in 2015. The new compound, called ammonia borane-hydrogen, contains more than triple that amount.

But the fly in the hydrogen is that the sought-after storage system must function at ambient pressure and temperature conditions. The process Lin used to get the added hydrogen into the ammonia borane has to take place at a minimum pressure that is approximately 60,000 times the usual pressure at the surface of the Earth.

"For energy applications, we need to stabilize the material near ambient conditions," said Lin, a graduate student in geological and environmental sciences. Currently, most hydrogen-powered machines use either compressed hydrogen gas or liquid hydrogen, which needs to be maintained at high pressure or very low temperature, respectively, relative to ambient temperature and pressure. These methods have associated safety concerns in the case of compressed hydrogen and require significant energy for cooling in the case of liquid hydrogen.

There is currently no material that satisfies all of the requirements for on-board fuel storage for hydrogen-powered vehicles, according to Lin, who is working with Wendy Mao, assistant professor of geological and environmental sciences at Stanford and a co-author of the paper.

"If the material can be stabilized at or near ambient conditions with a large amount of hydrogen content, then I think it will be very promising," Lin said.

There are potentially several ways to help stabilize the compound under normal temperature and pressure conditions. One idea is that there might be some "alternative chemical paths, like adding some catalyst to try to stabilize the system," Lin said.

If Lin and Mao succeed, ammonia borane could move one step closer to becoming an everyday storage material for hydrogen. Also closer to a reality would be scientists' and environmentalists' dream of powering cars with oxygen from the air and hydrogen from the fuel cell, while pumping out only water from the exhaust pipe.

Ho-kwang Mao, senior staff scientist at the Geophysical Laboratory at the Carnegie Institution of Washington, also participated in the research and is a co-author of the PNAS paper. Wendy Mao is also an assistant professor in the photon science department at SLAC National Accelerator Laboratory at Stanford.

The research was funded by the Department of Energy through the Stanford Institute for Materials and Energy Science.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>