Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn earworm moths get a lift from the wind

15.01.2004


Most corn earworms cannot survive the cold of a Northeastern winter, but each summer this sweet corn pest arrives back in the cornfields of the northeastern United States more quickly than most people believe is possible. Now, a team of Penn State meteorologists thinks it knows how the small moths travel long distances so quickly, and perhaps can predict where and when they will appear next.



"For years, researchers have assumed that the moths travel in parcels of air," says Matthew Welshans, undergraduate in meteorology and undergraduate research assistant at Penn State’s Environment Institute. "Few had actually tested this assumption, and no one tried to predict where or when the moths would land and earworms would appear in the Northeastern states."

Working with Dr. Shelby Fleischer, professor of entomology; Paul Knight, Penn State meteorologist; and Dr. Douglas A. Miller, assistant professor of geography, Welshans investigated the potential paths of corn earworm moths and other pests such as armyworm if they rode the wind as they spread northward during the spring and summer.


"We found a discernible trend that the corn earworm travels at some height and is impacted by the direction of the air currents," he told attendees of the 84th annual meeting of the American Meteorological Conference today (Jan. 14). "Depending on the time of day, the travel height could be from 500 meters (1640 feet) to a kilometer (3274 feet)."

The corn earworm larva is a major pest of sweet corn that destroys the top of the corn cob. While they will eat both field and sweet corn, a little damage to tops of field corn is irrelevant, while a chewed-up ear of sweet corn is not marketable.

"The northeastern United States accounts for more than 100,000 acres of sweet corn, or about a third of the total crop in the U.S.," Welshans said. "The crop was valued at more than $147 million in 2000."

The corn earworm moth lays its eggs on the corn silk but will lay them on other parts of the plant if the silk is not available. The eggs hatch in 2 to 10 days into small larvae that eat down the corn silk into the kernels at the tip of the ear. Because corn earworms are cannibalistic, usually only one or two larvae make it to the tender kernels. Eventually they drop to the ground and burrow in to pupate and emerge from the ground as moths. In the south, the earworms can have three generations per season with the last pupae wintering over before emerging to restart the cycle. In the north, assuming ground temperatures are normally cold, the winter-pupated insects freeze in the ground.

"Each year, in Pennsylvania, new corn earworms must fly into the area and repopulate," says Welshans. "But, the population grows much faster and greater than a slow move northward."

The researchers used a real-time tracking program called PestWatch that already exists in the Northeast. PestWatch uses blacklight traps that capture male and female moths and pheromone traps that capture male corn earworm moths. Individual volunteers count the insects in the traps once a week and report back to the PestWatch researchers at Penn State. The annual spread of the pest is put online so that farmers can see where insects are showing up (www.pestwatch.psu.edu).

Using this real pattern of insect population, along with a model developed by the National Oceanic and Atmospheric Administration to show wind patterns and a weather forecasting model to predict weather patterns, the researchers compared the actual pattern of insect appearances to that predicted by the wind and weather models.

"We want to be able to forecast when and were the moths, and subsequent larvae, will show up so that we can target the insects," says Welshans. "Then farmers can tailor the insecticides to reduce the amounts used or change their harvest or culling efforts."

With the two models and up-to-date information on where moths are, the Penn State researchers can not only track the insects but can also look backward at their paths to see where they are coming from and forward, to see where they will hit next.

"We are currently working on a flash program to animate the trajectories and integrate the PestWatch data so we can see the paths forward or backward," says Welshans. "Hopefully, this will be on-line for summer 2004."

One problem with the model is that volunteers only check the traps once a week so information tends to lag behind actual movement of the moths. However, because the various volunteers check their traps on different days of the week, using that to fill the time lag might be possible.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/
http://www.pestwatch.psu.edu

More articles from Agricultural and Forestry Science:

nachricht Crop achilles' heel costs farmers 10 percent of potential yield
24.01.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>