Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn earworm moths get a lift from the wind

15.01.2004


Most corn earworms cannot survive the cold of a Northeastern winter, but each summer this sweet corn pest arrives back in the cornfields of the northeastern United States more quickly than most people believe is possible. Now, a team of Penn State meteorologists thinks it knows how the small moths travel long distances so quickly, and perhaps can predict where and when they will appear next.



"For years, researchers have assumed that the moths travel in parcels of air," says Matthew Welshans, undergraduate in meteorology and undergraduate research assistant at Penn State’s Environment Institute. "Few had actually tested this assumption, and no one tried to predict where or when the moths would land and earworms would appear in the Northeastern states."

Working with Dr. Shelby Fleischer, professor of entomology; Paul Knight, Penn State meteorologist; and Dr. Douglas A. Miller, assistant professor of geography, Welshans investigated the potential paths of corn earworm moths and other pests such as armyworm if they rode the wind as they spread northward during the spring and summer.


"We found a discernible trend that the corn earworm travels at some height and is impacted by the direction of the air currents," he told attendees of the 84th annual meeting of the American Meteorological Conference today (Jan. 14). "Depending on the time of day, the travel height could be from 500 meters (1640 feet) to a kilometer (3274 feet)."

The corn earworm larva is a major pest of sweet corn that destroys the top of the corn cob. While they will eat both field and sweet corn, a little damage to tops of field corn is irrelevant, while a chewed-up ear of sweet corn is not marketable.

"The northeastern United States accounts for more than 100,000 acres of sweet corn, or about a third of the total crop in the U.S.," Welshans said. "The crop was valued at more than $147 million in 2000."

The corn earworm moth lays its eggs on the corn silk but will lay them on other parts of the plant if the silk is not available. The eggs hatch in 2 to 10 days into small larvae that eat down the corn silk into the kernels at the tip of the ear. Because corn earworms are cannibalistic, usually only one or two larvae make it to the tender kernels. Eventually they drop to the ground and burrow in to pupate and emerge from the ground as moths. In the south, the earworms can have three generations per season with the last pupae wintering over before emerging to restart the cycle. In the north, assuming ground temperatures are normally cold, the winter-pupated insects freeze in the ground.

"Each year, in Pennsylvania, new corn earworms must fly into the area and repopulate," says Welshans. "But, the population grows much faster and greater than a slow move northward."

The researchers used a real-time tracking program called PestWatch that already exists in the Northeast. PestWatch uses blacklight traps that capture male and female moths and pheromone traps that capture male corn earworm moths. Individual volunteers count the insects in the traps once a week and report back to the PestWatch researchers at Penn State. The annual spread of the pest is put online so that farmers can see where insects are showing up (www.pestwatch.psu.edu).

Using this real pattern of insect population, along with a model developed by the National Oceanic and Atmospheric Administration to show wind patterns and a weather forecasting model to predict weather patterns, the researchers compared the actual pattern of insect appearances to that predicted by the wind and weather models.

"We want to be able to forecast when and were the moths, and subsequent larvae, will show up so that we can target the insects," says Welshans. "Then farmers can tailor the insecticides to reduce the amounts used or change their harvest or culling efforts."

With the two models and up-to-date information on where moths are, the Penn State researchers can not only track the insects but can also look backward at their paths to see where they are coming from and forward, to see where they will hit next.

"We are currently working on a flash program to animate the trajectories and integrate the PestWatch data so we can see the paths forward or backward," says Welshans. "Hopefully, this will be on-line for summer 2004."

One problem with the model is that volunteers only check the traps once a week so information tends to lag behind actual movement of the moths. However, because the various volunteers check their traps on different days of the week, using that to fill the time lag might be possible.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/
http://www.pestwatch.psu.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>