Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn earworm moths get a lift from the wind

15.01.2004


Most corn earworms cannot survive the cold of a Northeastern winter, but each summer this sweet corn pest arrives back in the cornfields of the northeastern United States more quickly than most people believe is possible. Now, a team of Penn State meteorologists thinks it knows how the small moths travel long distances so quickly, and perhaps can predict where and when they will appear next.



"For years, researchers have assumed that the moths travel in parcels of air," says Matthew Welshans, undergraduate in meteorology and undergraduate research assistant at Penn State’s Environment Institute. "Few had actually tested this assumption, and no one tried to predict where or when the moths would land and earworms would appear in the Northeastern states."

Working with Dr. Shelby Fleischer, professor of entomology; Paul Knight, Penn State meteorologist; and Dr. Douglas A. Miller, assistant professor of geography, Welshans investigated the potential paths of corn earworm moths and other pests such as armyworm if they rode the wind as they spread northward during the spring and summer.


"We found a discernible trend that the corn earworm travels at some height and is impacted by the direction of the air currents," he told attendees of the 84th annual meeting of the American Meteorological Conference today (Jan. 14). "Depending on the time of day, the travel height could be from 500 meters (1640 feet) to a kilometer (3274 feet)."

The corn earworm larva is a major pest of sweet corn that destroys the top of the corn cob. While they will eat both field and sweet corn, a little damage to tops of field corn is irrelevant, while a chewed-up ear of sweet corn is not marketable.

"The northeastern United States accounts for more than 100,000 acres of sweet corn, or about a third of the total crop in the U.S.," Welshans said. "The crop was valued at more than $147 million in 2000."

The corn earworm moth lays its eggs on the corn silk but will lay them on other parts of the plant if the silk is not available. The eggs hatch in 2 to 10 days into small larvae that eat down the corn silk into the kernels at the tip of the ear. Because corn earworms are cannibalistic, usually only one or two larvae make it to the tender kernels. Eventually they drop to the ground and burrow in to pupate and emerge from the ground as moths. In the south, the earworms can have three generations per season with the last pupae wintering over before emerging to restart the cycle. In the north, assuming ground temperatures are normally cold, the winter-pupated insects freeze in the ground.

"Each year, in Pennsylvania, new corn earworms must fly into the area and repopulate," says Welshans. "But, the population grows much faster and greater than a slow move northward."

The researchers used a real-time tracking program called PestWatch that already exists in the Northeast. PestWatch uses blacklight traps that capture male and female moths and pheromone traps that capture male corn earworm moths. Individual volunteers count the insects in the traps once a week and report back to the PestWatch researchers at Penn State. The annual spread of the pest is put online so that farmers can see where insects are showing up (www.pestwatch.psu.edu).

Using this real pattern of insect population, along with a model developed by the National Oceanic and Atmospheric Administration to show wind patterns and a weather forecasting model to predict weather patterns, the researchers compared the actual pattern of insect appearances to that predicted by the wind and weather models.

"We want to be able to forecast when and were the moths, and subsequent larvae, will show up so that we can target the insects," says Welshans. "Then farmers can tailor the insecticides to reduce the amounts used or change their harvest or culling efforts."

With the two models and up-to-date information on where moths are, the Penn State researchers can not only track the insects but can also look backward at their paths to see where they are coming from and forward, to see where they will hit next.

"We are currently working on a flash program to animate the trajectories and integrate the PestWatch data so we can see the paths forward or backward," says Welshans. "Hopefully, this will be on-line for summer 2004."

One problem with the model is that volunteers only check the traps once a week so information tends to lag behind actual movement of the moths. However, because the various volunteers check their traps on different days of the week, using that to fill the time lag might be possible.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/
http://www.pestwatch.psu.edu

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

Understanding animal social networks can aid wildlife conservation

23.06.2017 | Ecology, The Environment and Conservation

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>