Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tilted acoustic tweezers separate cells gently

26.08.2014

Precise, gentle and efficient cell separation from a device the size of a cell phone may be possible thanks to tilt-angle standing surface acoustic waves, according to a team of engineers.

"For biological testing we often need to do cell separation before analysis," said Tony Jun Huang, professor of engineering science and mechanics. "But if the separation process affects the integrity of the cells, damages them in any way, the diagnosis often won't work well."


This is a schematic illustration of working principle and device structure for a tilted-angle standing surface acoustic wave-based cell-separation device.

Credit: Tony Huang, Penn State

Tilted-angle standing surface acoustic waves can separate cells using very small amounts of energy. Unlike conventional separation methods that centrifuge for 10 minutes at 3000 revolutions per minute, the surface acoustic waves can separate cells in a much gentler way.

The power intensity and frequency used in this study are similar to that used in ultrasonic imaging, which has proven to be extremely safe, even for fetuses. Also, each cell experiences the acoustic wave for only a fraction of a second, rather than 10 minutes.

... more about:
»MIT »acoustic »blood »efficiently »malaria »materials »waves

"The tilted-angle standing surface acoustic waves method has the least disturbance or disruption to the living cells being separated compared to other available methods so far," said Ming Dao, principal research scientist, materials science and engineering, Massachusetts Institute of Technology.

"It adds to the portfolio of latest technology developments for separating such things as rare circulating tumor cells in the blood."

Previous work by Huang showed that acoustic tweezers work by setting up a standing surface acoustic wave. If two sound sources are placed opposite each other and each emits the same wavelength of sound, there will be a location where the opposing sounds cancel each other. Because sound waves have pressure, they can push very small objects, so a cell or nanoparticle will move with the sound wave until it reaches the location where there is no longer movement.

If the sound sources are at right angles to each other, an evenly spaced set of rows and columns form in a checkerboard pattern. In this case, the team from Penn State, MIT and Carnegie Mellon University used simulation programs to determine the angle the sound sources should be tilted at to produce the best separation. They report their results today (Aug. 25) online in the Proceedings of the National Academies of Science.

By tilting the sound source so that it is not perpendicular, the researchers created better separation distance and could more efficiently sort cells.

The acoustic tweezers are made by manufacturing an interdigital transducer, which creates the sound, onto the piezoelectric chip surface. Standard photolithography creates microchannels in which the liquid containing the cells flow.

The researchers created the separator, which can run continuously. The device separated 9.9-micrometer particles from 7.3-micrometer particles so efficiently that 97 percent of the 7.3-micrometer particles went to the correct location. The device can also separate cancer cells from white blood cells with high efficiency and purity. It is simple and inexpensive to fabricate and does not need strict alignment to achieve this separation.

"The method we describe in this paper is a step forward in the detection and isolation of circulating tumor cells in the body," said Subra Suresh, one of the study's authors and president of Carnegie Mellon University. "It has the potential to offer a safe and effective new tool for cancer researchers, clinicians and patients."

The researchers see devices like this one separating cancer cells from other cells, bacteria from blood, white blood cells from red blood cells and malaria parasites from blood, to name a few uses.

###

Other Penn State researchers on this project were Xiaoyun Ding, graduate student and co-lead author; Sz-Chin Steven Lin, graduate student; Peng li, post doctoral fellow and Yuchao Chen, graduate student, engineering science and mechanics; and Sixing Li, graduate student, cell and developmental biology.

Other researchers were Zhangli Peng, former postdoctoral fellow, materials science and engineering, and Michela Geri, graduate student, mechanical engineering, both at MIT.

The National Institutes of Health and the National Science Foundation funded this work.

A'ndrea Elyse Messer | Eurek Alert!
Further information:
http://www.psu.edu

Further reports about: MIT acoustic blood efficiently malaria materials waves

More articles from Materials Sciences:

nachricht Combining the elements palladium and ruthenium for industry
22.09.2016 | National Institute for Materials Science

nachricht Defects at the spinterface disrupt transmission
21.09.2016 | Eberhard Karls Universität Tübingen

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>