Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hightech textiles to combat heat stress

25.10.2012
Optimised fire-resistant clothing to help protect against circulatory collapse

According to a study from 2003, 49% of fatalities amongst fire-fighters in the USA were attributable to heat stress.* Based on this study and within the framework of the research project (AiF-Nr. 16676 N) scientists at the Hohenstein Institute in Bönnigheim, in conjunction with several industry partners, have developed special functional underwear for fire-fighting deployment teams.

Whereas outer clothing as part of personal protective clothing (PPE) has been constantly improved and further fine-tuned over the last few decades and must also comply with detailed specifications, very little attention has to date been paid to the clothing layers worn beneath. In the sport and leisure sector these finely-tuned clothing layers worn on top of each other and providing optimum support to the physiological processes of the wearer have now become customary. However for the fire services the question of "underneath" has largely been viewed as a private matter despite the fact that they are subject to environmental conditions and physical exertion when in deployment that far exceed those in professional sport.

In the development of a clothing system for fire-fighters, project manager Dr. Bianca Wölfling from the team around Dr. Jan Beringer therefore had the specific objective of supporting the body's own cooling function in the best way possible through the fast diversion of sweat whilst simultaneously ensuring good heat insulation. "The environmental temperature and the degree of activity of fire-fighters varies greatly depending on the type of deployment. This balancing act can only be achieved via a clothing system based on the onion-skin principle. Accordingly the scientists researched the placement of clothing layers on top of each other which enabled them to solve the complex requirements.

In the laboratory tests two material variants proved to be particularly effective when worn as the clothing layer next to the skin. These were double-face materials with a hydrophobic (water-repellent) inside combined with a hydrophilic (water-attracting) outside. The resulting fast sweat transport away from the body was again significantly improved by the researchers in comparison to functional sports textiles. The same applies for the second material variant which was designed to be completely hydrophobic.

For the next clothing layer, which could in future replace the usual stationwear of professional fire services, the project team investigated the different membrane materials for their ability to absorb sweat and transport it away from the body. Attention was also paid to the heat insulation of this clothing layer. This is very important when using fire extinguishers as an additional barrier against the heat of a fire source and also as cold protection in other rescue scenarios.

In accordance with the title of the research project "Development of a physiologically functional and industrially reprocessable fire-resistant clothing for fire-fighters whilst retaining the protection function and fitness for purpose" the main emphasis of the investigation into outer clothing was the compliance of norms and specifications in relation to flame retardation and warning effectiveness. So that the workwear clothing can be used for as long as possible, these protective effects must not be significantly impaired through any reprocessing, such as washing and drying under the extreme mechanical and thermal conditions of commercial laundries. Therefore the scientists also compared the different materials in relation to these aspects and defined an optimum outer fabric design.

In addition to the laboratory investigations using what is referred to as the Skin Model and the thermal manikin "Charlie" who was used to investigate the thermal-physiological properties of the individual clothing layers and their interplay with each other, the Hohenstein scientists also worked with some test persons. They assisted at the start of the project to test customary fire-fighter suits under real conditions in the climate chamber. The aim here was to obtain subjective assessments of the wear comfort and physiological measurement values and then to add these to the objective investigation results established in the laboratory. The results revealed that fire-fighters wearing the usual suits worn to date start to sweat with moderate physical movement at an environmental temperature of 180C .

Through the wearer trials carried out at the end of the project, the objective measurement results of the optimised products were validated by the personal assessment of the test persons.

Contact:
Dr. Bianca Wölfling
E-Mail: b.woelfling@hohenstein.de
Project partners:
• Eschler Textil GmbH
• Fuchshuber Techno-Tex GmbH
• W.L. Gore & Associates GmbH
• Sympatex Technologies
• Trans-Textil GmbH
• Lion Apparel
• S Gard Schutzkleidung Hubert Schmitz GmbH & Co. KG
• Watex Schutzbekleidungs GmbH
• Tempex GmbH

Andrea Höra | idw
Further information:
http://www.hohenstein.de

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>