Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hightech textiles to combat heat stress

25.10.2012
Optimised fire-resistant clothing to help protect against circulatory collapse

According to a study from 2003, 49% of fatalities amongst fire-fighters in the USA were attributable to heat stress.* Based on this study and within the framework of the research project (AiF-Nr. 16676 N) scientists at the Hohenstein Institute in Bönnigheim, in conjunction with several industry partners, have developed special functional underwear for fire-fighting deployment teams.

Whereas outer clothing as part of personal protective clothing (PPE) has been constantly improved and further fine-tuned over the last few decades and must also comply with detailed specifications, very little attention has to date been paid to the clothing layers worn beneath. In the sport and leisure sector these finely-tuned clothing layers worn on top of each other and providing optimum support to the physiological processes of the wearer have now become customary. However for the fire services the question of "underneath" has largely been viewed as a private matter despite the fact that they are subject to environmental conditions and physical exertion when in deployment that far exceed those in professional sport.

In the development of a clothing system for fire-fighters, project manager Dr. Bianca Wölfling from the team around Dr. Jan Beringer therefore had the specific objective of supporting the body's own cooling function in the best way possible through the fast diversion of sweat whilst simultaneously ensuring good heat insulation. "The environmental temperature and the degree of activity of fire-fighters varies greatly depending on the type of deployment. This balancing act can only be achieved via a clothing system based on the onion-skin principle. Accordingly the scientists researched the placement of clothing layers on top of each other which enabled them to solve the complex requirements.

In the laboratory tests two material variants proved to be particularly effective when worn as the clothing layer next to the skin. These were double-face materials with a hydrophobic (water-repellent) inside combined with a hydrophilic (water-attracting) outside. The resulting fast sweat transport away from the body was again significantly improved by the researchers in comparison to functional sports textiles. The same applies for the second material variant which was designed to be completely hydrophobic.

For the next clothing layer, which could in future replace the usual stationwear of professional fire services, the project team investigated the different membrane materials for their ability to absorb sweat and transport it away from the body. Attention was also paid to the heat insulation of this clothing layer. This is very important when using fire extinguishers as an additional barrier against the heat of a fire source and also as cold protection in other rescue scenarios.

In accordance with the title of the research project "Development of a physiologically functional and industrially reprocessable fire-resistant clothing for fire-fighters whilst retaining the protection function and fitness for purpose" the main emphasis of the investigation into outer clothing was the compliance of norms and specifications in relation to flame retardation and warning effectiveness. So that the workwear clothing can be used for as long as possible, these protective effects must not be significantly impaired through any reprocessing, such as washing and drying under the extreme mechanical and thermal conditions of commercial laundries. Therefore the scientists also compared the different materials in relation to these aspects and defined an optimum outer fabric design.

In addition to the laboratory investigations using what is referred to as the Skin Model and the thermal manikin "Charlie" who was used to investigate the thermal-physiological properties of the individual clothing layers and their interplay with each other, the Hohenstein scientists also worked with some test persons. They assisted at the start of the project to test customary fire-fighter suits under real conditions in the climate chamber. The aim here was to obtain subjective assessments of the wear comfort and physiological measurement values and then to add these to the objective investigation results established in the laboratory. The results revealed that fire-fighters wearing the usual suits worn to date start to sweat with moderate physical movement at an environmental temperature of 180C .

Through the wearer trials carried out at the end of the project, the objective measurement results of the optimised products were validated by the personal assessment of the test persons.

Contact:
Dr. Bianca Wölfling
E-Mail: b.woelfling@hohenstein.de
Project partners:
• Eschler Textil GmbH
• Fuchshuber Techno-Tex GmbH
• W.L. Gore & Associates GmbH
• Sympatex Technologies
• Trans-Textil GmbH
• Lion Apparel
• S Gard Schutzkleidung Hubert Schmitz GmbH & Co. KG
• Watex Schutzbekleidungs GmbH
• Tempex GmbH

Andrea Höra | idw
Further information:
http://www.hohenstein.de

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>