Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paint and Lacquer Curing – Infrared Emitters and UV Lamps Provide an Efficient Combination

10.02.2014
Drying of varnishes on metal plates, curing of coatings on lamp housings - in the industrial sector there are numerous different coating processes.

However, for the manufacturer, this can present real challenges, as very often these manufacturing steps can be costly and energy-demanding.


Infrared heat dries, UV radiation cures – tests in our Application Centre help to define the necessary parameters.

Copyright Heraeus Noblelight, Hanau 2014

Heraeus Noblelight is showing application-focused UV lamps, infrared emitters and systems for coating curing at the PaintExpo exhibition in Karlsruhe in April. Examples of applications will show when and where a combination of UV and IR can be beneficial and what parameters must be observed.

Infrared transfers energy to materials without contact, generates heat where it is required and consequently is especially efficient in the drying of varnishes or the melting of powder coatings. In a UV curing process, polymerization, photo-initiators are activated by intensive UV light and cured in a fraction of a second.

As a result, the material is cured very quickly and the surface is dry, wear-resistant and can be subjected to further processes immediately. In some applications, the curing can be optimized and carried out more efficiently by a combination of infrared heat with UV radiation. These applications include high quality surface coatings and surfaces which must be scratch resistant.

Plastic surface are given a scratch-free coating, to impart a mirror finish. Fingerprint-resistance prevents smearing of the highly polished surfaced by fingerprints, hand cream or suntan lotions. Such coatings are often UV coatings, which need UV radiation to initiate the cross-linkage. This cross-linkage reaction occurs more efficiently at higher temperatures and can be further optimized by pre- or post-heating. For this reason, some plastic components such as radio fascias, gear sticks or lipstick casings are often pre-heated with infrared. This provides an improvement in the coating properties.

Infrared Emitters Provide Very Efficient Curing of Coatings on Many Materials
Infrared heating has already proved successful in the drying of coatings, as infrared radiation penetrates into the material, at a depth depending on the material, and dries the coating film from the inside outwards. Skin or bubble-formation on the surface is prevented and coating drying is accelerated. The result is a brilliant surface quality. Infrared emitters transfer heat in a contact-free and efficient manner, with the aid of electromagnetic waves, which generate the heat first in the coated material. Unlike hot air systems, infrared heating minimizes the adhesion of spurious particles in the sensitive coating during drying.
Radiation, which is precisely matched to the product and coating, is quickly converted into heat where it is required. It vaporizes water or other solvents, while the material and the immediate environment remain cooler. For example, medium wave infrared radiation is particularly well absorbed by water. Consequently, it is particularly good for water-based coatings.

IR heating is also ideal for web substrates such as paper, textiles and foils, where IR heat dries coatings within seconds. IR heat dries large three dimensional objects such as engine blocks or metal housings faster than some hot air systems, as metal is a very good conductor of heat and infrared emitters transfer large amounts of energy in a very short time.

UV Lamps Cure in Seconds in a Targeted Fashion

UV radiation allows UV paints, lacquers and adhesives to cure very quickly. In contrast to conventional coatings UV formulations contain little or no solvents. In a UV curing process, polymerization, photo-initiators are activated by intensive UV light. Chemical compounds are then broken down and then cross link to form new compounds. In fractions of a second, the cross-linked system is dry and abrasion-proof and is suitable for further processing.

Today, there are already light sources doped with Gallium or mercury. Their wavelengths determine the point of the curing: in the depth of the coating or on the surface. The optimum curing process is affected by different factors. The emission spectrum and intensity of the UV light source, the carrier material and ambient temperature, the nature and thickness of the material to be cured, the process speed, the distance between the material and the UV light source and, naturally, the chemical composition of the coating system must all be taken into consideration. UV light sources, precisely matched to the process, improve reliability as well as process speed, reduce the material loading and save both costs and energy.

When Should a Combination of Infrared Heat and UV Technology Be Considered?

Heat improves the mobility of molecules and so improves the curing reaction. Many processes introduce only a little heat into the coating materials, sometimes when the process runs very fast. This can be detrimental to the adhesion and stability of the coating.

UV curing is a chemical cross-linking process. By pre-heating the substrate with infrared radiation there is better adhesion and cross-linking of UV coatings. It has been shown to be beneficial to heat materials in a targeted fashion before the UV cross linking.

Infrared heat is also used to drive solvents from high gloss UV coating before curing. This is especially important with modern, water-based wet coatings. Here infrared heat is used to vaporize the water, so that the following UV radiation can cross-link the coating optimally.

A combination of IR and UV should then be considered when excellent quality is demanded or energy needs to be saved. By the innovative combination of infrared heat with UV technology the energy efficiency of the coating curing is improved on one hand and the cross-linking of UV coatings is optimized on the other hand.

The precious metals and technology group Heraeus headquartered in Hanau, Germany, is a global, family company with over 160 years of tradition. Our businesses include precious metals, materials and technologies, sensors, biomaterials and medical products, quartz glass, and specialty lighting sources. With product revenues of € 4.2 billion and precious metal trading revenues of € 16 billion in 2012, Heraeus has around 12,200 employees in more than 100 companies worldwide and holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2012, Heraeus Noblelight had an annual turnover of 92.5 Million € and employed 715 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

Heraeus Noblelight acquired the Fusion UV Systems Group, headquartered in Gaithersburg, Maryland, USA, on 31 January 2013.

For further information, please contact:

Technical: Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press: Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht Market innovation at glasstec 2016: VGA infrared camera for the glass industry
28.09.2016 | Optris GmbH

nachricht Complex hardmetal tools out of the 3D printer
21.09.2016 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>