Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical Protein Discovered for Healthy Cell Growth in Mammals

28.01.2014
A team of researchers from Penn State University and the University of California has discovered a protein that is required for the growth of tiny, but critical, hair-like structures called cilia on cell surfaces.

The discovery has important implications for human health because lack of cilia can lead to serious diseases such as polycystic kidney disease, blindness and neurological disorders.


Using mouse models, Penn State cellular biologist Aimin Liu and his colleagues discovered a protein that is required for the growth of critical, hair-like structures called cilia on cell surfaces. The cilia on a mouse embryo, shown in this micrograph, would not be able to grow without the protein C2cd3. Credit: Aimin Liu Lab, Penn State University.

"If we want to better understand and treat diseases related to cilium development, we need to identify important regulators of cilium growth and learn how those regulators function," said co-author Aimin Liu, associate professor of biology at Penn State. "This work gives us significant insight into one of the earliest steps in cilium formation."

The researchers describe their findings in a paper that will be published online in the Proceedings of the National Academy of Sciences during the week of 27 January 2014. In addition to Liu, authors include Penn State cellular biologists Xuan Ye, Huiqing Zeng and Gang Ning, as well as Jeremy F. Reiter, a biophysicist at the University of California - San Francisco.

Cilia, which are present on the surface of almost all mammalian cells, are responsible for sending, receiving, and processing information within the body. "You could think of cilia as the cells' antennae," Liu said. "Without cilia, the cells can't sense what's going on around them, and they can't communicate." Cilia also perform important filtering and cleansing functions. For example, cilia inside the trachea, or windpipe, trap and prevent bacteria from entering the lungs.

In a previous study, Liu and his colleagues learned that a protein called C2cd3 is important for cilium formation because mice that lacked this protein exhibited severe developmental problems typically associated with the lack of cilia. "At the time we knew only that if we get rid of the protein, the cells in the animal would not grow cilia," Liu said. "We didn't understand why, but now we do."

A cilium grows from a centriole, a structure that clings to the inner surface of the cell and serves as an anchor for the cilium. Before a cell can grow a cilium, it needs to assemble a set of appendages at one end of the centriole. These appendages can then connect the centriole to the cell surface, allowing the outgrowth of a cilium. Just how these appendages are assembled, though, remained a mystery for more than four decades since their discovery in 1962.

Liu and his colleagues found that appendages were not assembled at the end of the centriole when the C2cd3 protein is not present. As a result, the centriole is not associated with the cell membrane and cannot recruit other proteins for the further growth of the cilium. "So our protein is required for the very first step of putting a cilium together," Liu explained. "Without those appendages, the cilium growth cannot happen."

The researchers hope their discovery will lead to greater knowledge of the process of cilium development and, eventually, to treatments for a wide range of health problems that fall under the label of ciliopathy. "Ciliopathy is a scientific term that covers a lot of diseases," Liu said. As well as contributing to cystic disorders in the kidney and liver, lack of cilia can lead to blindness or deafness, since cilia in the retina serve as receptors that process light stimulation and cilia within the ear are required in neurons that translate sound waves into neural signals.

The research was funded by the National Institutes of Health (R01AR054396, R01GM095941), the Burroughs Wellcome Fund, the Packard Foundation, the Program for Breakthrough Biomedical Research, an American Heart Association Scientist Development Grant (0830174N) and Penn State University.

Contacts:
Aimin Liu: axl25@psu.edu, (+1) 814-865-7043
Barbara Kennedy (PIO): science@psu.edu, 814-863-4682

Krista Weidner | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>