Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Network Stability through Automatic Load Shedding

05.11.2012
Siemens is stabilizing the power supply systems at major industrial facilities.

With an automatic load shedding technology - in other words a regulated interruption of power to consumers - the balance in a power grid can be maintained.


Siemens has developed an automatic load shedding system for the power supply of large-scale industrial plants in the oil and gas industry, helping to stabilize the networks in critical situations.

This solution is intended primarily for use in the oil and gas industries, whose drilling and production facilities are often equipped with their own power plants and grids. As in every power grid, island-capable networks must also be able to maintain a constant balance between the generation and the consumption of electricity.

If the balance is disturbed - for example, if a large consumer shuts down because of a failure - the whole network can collapse in a worst case scenario. An interruption of only an hour at a large refinery or an LPG facility can already cause millions of euros in costs. Automatic load shedding prevents shutdowns by disconnecting consumers according to specific priorities until the grid obtains a level at which it can remain stable.

Until now, when a disruption occurred - for example, if the network frequency dropped - load shedding systems have shut down pre-determined consumers. Sometimes, this meant that too much load was shed, and the network remained out of balance.

Other units of equipment would then fail, leading to a complete shut down. For automatic load shedding, all of the possible disruption patterns are worked out ahead. The aim is to determine which consumers need to be disconnected in order to keep the grid stable. The highest priority is to keep production running smoothly.

In other words, air conditioners, lighting, and other non-critical devices are the first to be taken offline. When a disruption occurs, the load shedding system recognizes which scenario it is dealing with based on data from the grid and shuts down the appropriate consumers in less than a tenth of a second.

Short reaction times are achieved using glass-fiber Ethernet and GOOSE-Telegramme - special communication services that enable rapid communication across the entire network. As a prerequisite, the system had to be designed according to the IEC 61850 communication standard for energy systems. This rapid shutdown is supported by dynamic load shedding in which the system determines performance reserves.

As a reserve function, additional frequency-dependent load shedding ensures the highest level of operational security. Because the new load shedding technology is based on the Siemens control system for energy systems, installation does not result in costs for additional equipment.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Spherical tokamak as model for next steps in fusion energy
25.08.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht An effective and low-cost solution for storing solar energy
25.08.2016 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>