Silica-based Photopigments – Silica-based gel with entrapped (photo-)sensitive material

Entrapping sensitive material, e.g. immobilization of biomolecules or immobilization of other light-, pH- and/or temperature sensitive material is a demanding task in the art. That is, immobilization of biomolecules within polymer matrices has gained considerable importance in various fields of biotechnical processes.

For example photosynthetically active components which can absorb light and transfer energy, may be immobilized (entrapped) within suitable immobilization compounds, like polymer matrices for biotechnical processes. However, photosynthetically active components are extremely unstable and need to be stabilised outside of the cell, in order to use these highly effective components e.g. in third generation photo¬voltaics and artificial photosynthesis, respectively. The immobilized sensitive material includes active components, like the mentioned photosynthetically active components, but also optically and electrochemically active material. Beside encapsulation of whole cells, cell compartments or cell organelles as well as biological macromolecules including proteins, enzymes or other sensitive materials have been entrapped or encapsulated. In addition, systems have been described wherein the sensitive materials have been encapsulated in biopolymers first and said encapsulated sensitive materials are coated with e.g. silica allowing to associate soft biocompatible components, like alginate, with a tough thermostable non-swelling component like silica. The present invention describes new transparent silica-based gel and “glass” with entrapped sensitive material which is in particular light-, pH- and/or temperature- sensitive and furthermore a method of its preparation.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors