Macro-porous, nanocrystalline silicon layer for lithium-ion batteries

For the production of rechargeable batteries, it is desirable to use silicon as anode material in Li-ion batteries. The use of silicon anodes theoretically increases battery capacity tenfold compared to conventional graphite anodes. However, the attempt had previously failed, since the layers would expand by 300 to 400 % due to the storage of lithium ions in the Si bulk material. This induces a high residual strain and can destroy the bulk Si after only a few charge cycles. In addition, as a consequence of the irreversible reaction between the Si anode and electrolyte a layer of solid electrolyte interphase (SEI) can develop and lead to a low coulombic efficiency.
Scientists of the University of Stuttgart now succeeded in developing a porous semiconductor layer, which displays a pore distribution from 50 to 3000 nm and eliminates the residual strain. It can be manufactured in a continuous process.

Further information: PDF

Technologie-Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH
Phone: +49 (0)721/79 00 40

Contact
Dipl.-Biol. Marcus Lehnen, MBA

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors