Indexreduktion in der Schaltungssimulation

Simulation is widely used to test electrical circuits of microchips before a prototype is built. However a quick and reliable simulation of modern microchip circuits is very difficult because of their complexity and high number of elements.

The main methods of simulation used today generate systems of equations containing differential and algebraic relations, the DAE system. The problem is that the generated DAEs contain so called hidden constrains, that can only be revealed by differentiating certain equations. The order of these differentiations and thus complexity of the whole DAE system is closely related to the tractability index of a DAE. DAEs having an index higher than 1 are costly to solve while accuracy suffers as well. The aim of our new method is to obtain DAEs of index 1. Therefore the hidden con-strains are derived from the information contained in the circuit, through a topological index analysis, without algebraic transformations of the circuit equations. They are directly embedded into the circuit model by replacing “critical” elements. The resulting DAE is of index 1 and can easily be implemented into existing solvers.

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Ursula Haufe

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors