CAAI – Covalent-allosteric AKT inhibitors – Inhibitors of the AKT pathway with a new mode of binding

The development of new drugs in oncology has shifted from unspecific cytotoxic drugs to highly specific substances with known targets and modes of action. A prominent group of these target specific cancer drugs are the kinase inhibitors. The invented substances are inhibitors of the kinase AKT which is involved in several pathways regulating cell functions in cancer, e.g. survival and proliferation.

The particular novelty of the invented compounds is based on their combined covalent-allosteric binding mode. These are first-in-class modulators of AKT with a novel mode of inhibition. Covalent-allosteric inhibitors show extended drug-target residence times.
AKT is a serine/threonine kinase and oncogene that has already been identified and addressed as a target in cancer therapy by several pharma companies. The invented substances are of high interest for any pharma company with an oncology pipeline and are of special advantage for those who seek to improve, broaden or supplement their kinase inhibitor portfolio.

Further information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Research led by Jia Zhou in the Hibbs Lab at UC San Diego has mapped the structures of human brain receptors for the neurotransmitter GABA. The team obtained samples from epilepsy patients undergoing surgery, and used cryo-EM to understand how different protein subunits can assemble in many ways. The study has implications for understanding signaling in the brain and for treating diseases like epilepsy.

Cracking the GABAA Code: Novel Insights into Brain Receptor Structure

Advanced scientific instruments allow scientists to build a map of brain receptors, opening the door to possible novel ways to treat epilepsy and mental disorders Certain proteins found in the…

Patrick Heighway from Oxford University–winner of the European XFEL Young Scientist Award 2025.

European XFEL Award Felicitates Oxford’s Patrick Heighway

His work helps to pave the way to major contributions to improvements to the facility, and to data analysis and interpretation by means of theory or modelling. Three excellent posters…

Photo shows, from L to R, Adam Godzik, Meera Nair, and Djurdjica Coss.

Endocrinology, Immunology Unite Against Obesity and Parasitic Worm Attacks

NIH grant to UCR School of Medicine could improve treatments for metabolic disorders and helminth infections RIVERSIDE, Calif. — Biomedical scientists at the University of California, Riverside have received a…