Scientists Create Carbon Nanothermometer

Scientists continue to create new uses for carbon nanotubes, those tiny cylinders comprised of pure carbon. A paper published today in the journal Nature describes a thermometer made out of a column of carbon just 10 micrometers long. According to the report, the nanodevice can measure temperatures between 50 and 500 degrees Celsius and “should be suitable for use in a wide variety of microenvironments.”

Yihua Gao and Yoshio Bando of the National Institute for Materials Science in Ibaraki, Japan, filled nanotubes less than 150 nanometers in diameter with a one-dimensional column of liquid gallium. In larger quantities, liquid gallium has one of the widest temperature ranges of any metal, spanning 30 to 2,403 degrees C. The researchers determined that nanoquantities of the metal behave similarly and that the liquid’s behavior within the tube changes predictably with temperature.

Like the mercury in a conventional thermometer, the minuscule meniscus in the nanodevice moves up and down as the gallium expands and contracts in response to temperature. Gao and Bando suggest the new nanothermometer will extend temperature measurements in very small systems beyond the four to 80 kelvins range that current electronic-based devices can achieve.

Media Contact

Sarah Graham Scientific American

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Thermal insulation for quantum technologies

Thermal insulation is not only important for buildings, but also in quantum technologies. While insulation panels around a house keep the heat inside, quantum devices require insulation against heat from…

Spin keeps electrons in line in iron-based superconductor

Electronic nematicity, thought to be an ingredient in high temperature superconductivity, is primarily spin driven in FeSe finds a study in Nature Physics. Researchers from PSI’s Spectroscopy of Quantum Materials…

Scientists devise method to prevent deadly hospital infections without antibiotics

Novel surface treatment developed at UCLA stops microbes from adhering to medical devices like catheters and stents. A hospital or medical clinic might be the last place you’d expect to…

Partners & Sponsors