Taking correlated quantum Hall physics to the third dimension
Hall resistivity as a function of magnetic field at 2 K in units of the Planck constant h, the elementary charge e and the Fermi wavevector along the magnetic field kF,z.
© MPI CPfS
Scientists at the Max Planck Institute for Chemical Physics of Solids and their international colleagues found signatures of an unconventional Hall response in the quantum limit of the bulk metal HfTe5, adjacent to the three-dimensional quantum Hall effect of a single electron band at low magnetic fields.
The quantum Hall effect is among the most prominent examples of a quantum phenomenon that occurs on a truly macroscopic scale. Its robust nature renders the quantum Hall effect vastly important for applications. It is nowadays for example used as the “gold standard” to gauge electric resistances. Even more importantly, the quantum Hall effect can be considered a drosophila for topological physics, and numerous topological states of matter can be understood building on the fundamental insights gained in connection to the quantum Hall effects over the past decades.
Traditionally, the quantum Hall effect has exclusive been associated with two-dimensional metals. Now, scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, the Technische Universität Dresden, the Brookhaven National Laboratory at New York, the Helmholtz-Zentrum Dresden-Rossendorf, the University of the Chinese Academy of Sciences, and the Wuerzburg-Dresden Cluster of Excellence ct.qmat have discovered a new strongly correlated electronic state in a three-dimensional metal that is a close relative of the two-dimensional quantum Hall state.
The team found signatures of an unconventional Hall response in the quantum limit of the bulk metal HfTe5, adjacent to the three-dimensional quantum Hall effect of a single electron band at low magnetic fields. The additional plateau-like feature in the Hall conductivity of the lowest Landau level is accompanied by a Shubnikov-de Haas minimum in the longitudinal electrical resistivity and its magnitude relates as 3/5 to the height of the last plateau of the three-dimensional quantum Hall effect. The findings are consistent with strong electron-electron interactions stabilizing an unconventional variant of the Hall effect in a three-dimensional material in the quantum limit.
Given that topological states of matter have been of utmost importance in our understanding of two-dimensional systems, these new findings promise exciting future insights. Examining the novel properties of quantum Hall physics in three-dimensional metals could not only allow scientists to better understand how far the mysterious realm of quantum Hall physics spreads, but also drive research on strongly correlated topological states in three-dimensional materials in general.
Wissenschaftliche Ansprechpartner:
Johannes.Gooth@cpfs.mpg.de
Originalpublikation:
S. Galeski, X. Zhao, R. Wawrzyńczak, T. Meng, T. Förster, P. M. Lozano, S. Honnali, N. Lamba, T. Ehmcke, Q. Li, G. Gu, W. Zhu, J. Wosnitza, C. Felser, G. F. Chen, J. Gooth. Unconventional Hall response in the quantum limit of HfTe5,
Nature Communications 11, 5926 (2020).
https://doi.org/10.1038/s41467-020-19773-y
Weitere Informationen:
Media Contact
All news from this category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Latest posts
Seawater as an electrical cable !?
Wireless power transfers in the ocean For drones that can be stationed underwater for the adoption of ICT in mariculture. Associate professor Masaya Tamura, Kousuke Murai (who has completed the…
Rare quadruple-helix DNA found in living human cells with glowing probes
New probes allow scientists to see four-stranded DNA interacting with molecules inside living human cells, unravelling its role in cellular processes. DNA usually forms the classic double helix shape of…
A rift in the retina may help repair the optic nerve
In experiments in mouse tissues and human cells, Johns Hopkins Medicine researchers say they have found that removing a membrane that lines the back of the eye may improve the…