New developments in assessing fluid flows

Scientists at Oxford University are developing a new Doppler Global Velocimetry (DGV) technique that will enable three-dimensional fluid velocity fields to be imaged reliably and accurately.

Over the last twenty years, a number of techniques have been explored to enable clear imaging of fluid flows, with the most advantageous being those that are non-intrusive. To date, one of the most important techniques has been particle image velocimetry (PIV). However, there is a major disadvantage with using PIV because considerable off-line processing is necessary to deconvolve the double image into a velocimetry field and three-dimensional information is difficult to retrieve.

In order to improve this technique, researchers in the Department of Engineering Science at Oxford University have developed the Doppler Global Velocimetry (DGV) technique that enables three-dimensional imaging of fast fluid flows in both an efficient and reliable manner.

The system is being developed with a number of significant modifications to specifically increase the reliability and accuracy of the measurements. In particular only one camera shot is now necessary, data processing is much easier, the imaging optics do not need to be as rigorous and three-dimensional information is more readily available.

The system has already been used successfully for a number of applications, including the imaging of gas flows in applications similar to those over gas turbine blades and in gas jets. Isis Innovation, Oxford University’s technology transfer company, still has opportunities available for companies interested in utilising this system in other applications.

Media Contact

Jennifer Johnson alfa

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Key breakthrough towards on-site cancer diagnosis

No stain? No sweat: Terahertz waves can image early-stage breast cancer without staining. A team of researchers at Osaka University, in collaboration with the University of Bordeaux and the Bergonié…

A CNIO team describes how a virus can cause diabetes

It has recently been described that infection by some enteroviruses – a genus of viruses that commonly cause diseases of varying severity – could potentially trigger diabetes, although its direct…

Targeting the shell of the Ebola virus

UD research team looking at ways to destabilize virus, knock it out with antivirals. As the world grapples with the coronavirus (COVID-19) pandemic, another virus has been raging again in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close