Prototype measuring device for the most minuscule forces

In the case of scanning force microscopes, the nominal values for bending stiffnesses deviate distinctly from the actual values. With the current devices, calibrations of cantilevers are accurate to > 5%.

For forces in the nano- and piconewton range one therefore requires more accurate realisations and stable transfer standards.

In order to offer this in future, the Physikalisch-Technische Bundesanstalt (PTB) has set up the protoype of a nanonewton force-measuring device. First measurements show that the measuring principle functions well: The very small force (of approx. 50 pN) of a laser beam on the pendulum, the “heart” of the apparatus, is measured with a voltage (acting as counterforce), and this with a measuring uncertainty of 5 % to 10 %.

First measurements have shown that the measuring device is sufficiently protected against vibrations (so-called “seismic noise”). A large-scale device, which is to be set up next year, is envisaged to bring still further improvements here. Furthermore, other changes are also needed to be able to actually measure on cantilevers (as transfer standards).

Media Contact

Erika Schow alfa

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Grow faster, die sooner: How growth rates influence the fitness of bacteria

“The fitness of bacteria is more complex than expected,” explains Ulrich Gerland, professor for the theory of complex biosystems at the Technical University of…

Spintronics: Researchers show how to make non-magnetic materials magnetic

In solid-state physics, oxide layers only a few nanometres thick are known to form a so-called two-dimensional electron gas. These thin layers, separated from…

Caterpillars of the wax moth love eating plastic: Fraunhofer LBF investigates degradation process

Within the Framework of a research project on the chemical imaging analysis of plastic digestion in caterpillars (RauPE), a team from Fraunhofer LBF used…