Student creates material with multi-patterned surface to study tissue growth

Modern medicine has the desire to replace damaged tissue with newly grown tissue, such as to repair skin, bone, cartilage, or arteries. But what kinds of surfaces could be used to grow suitable tissues?

Suolong Ni, a graduate student in chemistry at Virginia Tech, has fabricated a biopolymer onto solid surfaces with a range of properties to enable the study of the effects of different surfaces on cell adhesion and tissue growth. He will present his research in the Excellence in Graduate Polymer Science Research Symposium at the 231st American Chemical Society National Meeting in Atlanta on March 26-30.

Ni has fabricated a thin film that has both smooth areas and areas where the molecules have formed a geometric or crystal-like relationship, making the surface patterned. So far he has prepared a series of surface patterns with controlled surface morphology. These surfaces may be suitable for cell adhesion studies.

Media Contact

Susan Trulove EurekAlert!

More Information:

http://www.vt.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors