Researchers unravel genetic mechanism of fatty liver disease in obese children

The study, which focused on three ethnic groups, is published in the March issue of the journal Hepatology.

Led by Nicola Santoro, M.D., associate research scientist in the Department of Pediatrics at Yale School of Medicine, the authors measured the hepatic, or liver, fat content of children using magnetic resonance imaging. The study included 181 Caucasian, 139 African-American and 135 Hispanic children who were, on average, age 13.

“We observed that a common genetic variant known as Patatin-like phospholipase domain containing protein-3 (PNPLA3) working with a regulatory protein called glucokinase (GCKR), was associated with increased triglycerides, very low-density lipoproteins levels, and fatty liver,” said Santoro.

Santoro explained that his observations could help unravel the genetic mechanisms that contribute to liver fat metabolism. “This may drive the decisions about future drug targets to treat hypertriglyceridemia and non-alcoholic fatty liver disease,” he said.

Childhood obesity is a global health concern. Experts say nonalcoholic fatty liver disease is now the leading cause of chronic liver disease in children and adolescents in industrialized countries.

“Our findings confirm that obese youths with genetic variants in the GCKR and PNPLA3 genes may be more susceptible to fatty liver disease,” said Santoro, who is cautious about automatically extending this observation to the overall population.

“Our data refer to a population of obese children and adolescents,” he said. “I think that further studies in a larger sample size involving lean subjects and adults may help to further define in more details these associations.”

Other authors on the study included Clarence K. Zhang, Hongyu Zhao, Andrew J. Pakstis, Grace Kim, Romy Kursawe, Daniel J. Dykas, Allen E. Bale, Cosimo Giannini, Bridget Pierpont, Melissa M. Shaw, Leif Groop, and Sonia Caprio.

The work was also funded, in part, by the Yale Clinical and Translational Science Award grant from the National Center for Research Resources at the National Institutes of Health.
Citation: Hepatology Vol. 55, No. 3 (March 2012)
http://onlinelibrary.wiley.com/doi/10.1002/hep.24806/abstract.

Media Contact

Karen N. Peart EurekAlert!

More Information:

http://www.yale.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors