Self-Healing Materials

A new catalyst-free, self-healing material system developed by researchers at the University of Illinois offers a far less expensive and far more practical way to repair composite materials used in structural applications ranging from airplane fuselages to wind-farm propeller blades.

The new self-healing system incorporates chlorobenzene microcapsules, as small as 150 microns in diameter, as an active solvent. The expensive, ruthenium-based Grubbs’ catalyst, which was required in the researchers’ first approach, is no longer needed.

“By removing the catalyst from our material system, we now have a simpler and more economical alternative for strength recovery after crack damage has occurred,” said Jeffrey Moore, the Murchison-Mallory Professor of Chemistry at Illinois. “Self-healing of epoxy materials with encapsulated solvents can prevent further crack propagation, while recovering most of the material’s mechanical integrity.”

The new chemistry is described in a paper accepted for publication in Macromolecules, and posted on the journal’s Web site.

During normal use, epoxy-based materials experience stresses that can cause cracking, which can lead to mechanical failure. Autonomous self-healing – a process in which the damage itself triggers the repair mechanism – can retain structural integrity and extend the lifetime of the material.

“Although we demonstrated the self-healing concept with a ruthenium-based catalyst, the cost of the catalyst made our original approach too expensive and impractical,” said Moore, who also is affiliated with the university’s Frederick Seitz Materials Research Laboratory and with the Beckman Institute. “Our new self-healing system is simple, very economical and potentially robust.”

In the researchers’ original approach, self-healing materials consisted of a microencapsulated healing agent (dicyclopentadiene) and Grubbs’ catalyst embedded in an epoxy matrix. When the material cracked, microcapsules would rupture and release the healing agent, which then reacted with the catalyst to repair the damage.

In their new approach, when a crack forms in the epoxy material, microcapsules containing chlorobenzene break. The solvent disperses into the matrix, where it finds pockets of unreacted epoxy monomers. The solvent then carries the latent epoxy monomers into the crack, where polymerization takes place, restoring structural integrity.

In fracture tests, self-healing composites with catalyst-free chemistry recovered as much as 82 percent of their original fracture toughness.

The new catalyst-free chemistry has taken down the barriers to cost and level of difficulty, Moore said. “From an economics and simplicity standpoint, self-healing materials could become part of everyday life.”

With Moore, co-authors of the paper are graduate student and lead author Mary Caruso, former postdoctoral research associate David Delafuente (now a chemistry and physics professor at Augusta State University), visiting University of Texas at Austin undergraduate student Victor Ho, materials science and engineering professor Nancy Sottos, and aerospace engineering professor Scott White.

The work was funded by the Air Force Office of Scientific Research and the National Science Foundation.

Media Contact

James E. Kloeppel University of Illinois

Further information:

http://www.uiuc.edu

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Optically Active Defects Improve Carbon Nanotubes

Heidelberg scientists achieve defect control with a new reaction pathway. The properties of carbon-based nanomaterials can be altered and engineered through the deliberate introduction of certain structural “imperfections” or defects….

Visualizing the motion of vortices in superfluid turbulence

Nobel laureate in physics Richard Feynman once described turbulence as “the most important unsolved problem of classical physics.” Understanding turbulence in classical fluids like water and air is difficult partly…

Toward a reliable oral treatment for sickle cell disease

For the millions of people worldwide who have sickle cell disease, there are only a few treatment options, which include risky bone marrow transplants, gene therapy or other treatments that…

Partners & Sponsors