Infamous proto-oncogene, c-myc, turns up in a new role

The surprising finding, by a Swiss research team led by investigators from the Lausanne Branch of the international Ludwig Institute for Cancer Research (LICR), showed that c-myc functions in the immune system’s ‘memory’ of previous infections.

In order to rapidly and efficiently respond to new infections, the immune system evolved such that it stores a ‘memory’ of previous attack by pathogens. The specialized cells involved in this process are known as ‘T memory cells’. The T memory cells are normally maintained at a low level that can be rapidly expanded if the pathogen is detected again. The maintenance of normal, low levels, or ‘homeostasis’, of T memory cells is dependent on a signalling factor, a so-called cytokine, known as

‘IL-15’.

“Very little is known about the signalling pathways that actually control IL-15-dependent homeostasis,” explains LICR’s Dr. H. Robson MacDonald, the senior author of the study. “By analyzing genetically engineered mouse models with reduced c-myc, reduced IL-15 or absent IL-15, we discovered that it’s actually c-myc, which is known primarily as an oncogene, that acts downstream of the IL-15 signaling pathway to regulate T memory cell homeostasis.”

According to Dr. MacDonald, the study is basic research that may have implications for therapies of the future. “Understanding how immune memory works might allow us to improve therapeutic vaccines against, say, malaria or cancer. The unexpected finding is that this study is also a cautionary tale. Before we design new therapies that inactivate a gene product, which is an approach being considered for c-myc in cancer, we need to be very sure that we are not going to be also destroying a vital role in a normal process such as the body’s immune system.”

Media Contact

Sarah White alfa

Further information:

http://www.licr.org

All news from this category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Newly published data provides clearer picture of volcano collapse

URI Professor Stéphan Grilli is keeping a close eye on volcanoes closer to the US. An article recently published in the prestigious journal Nature Communications, written by University of Rhode…

World first concept for rechargeable cement-based batteries

Imagine an entire twenty storey concrete building which can store energy like a giant battery. Thanks to unique research from Chalmers University of Technology, Sweden, such a vision could someday…

In milliseconds from polluted to clear water

New discoveries in the field of nanoscience … Researchers at the Max Planck Institute of Colloids and Interfaces developed a membrane that is composed of a bundle of nanometer-sized tubes….

Partners & Sponsors