Scientists discover stem cell origin of neck and shoulders

Research published in Nature (21 July) will outline for the first time the stem cell origin of the structure of the neck and shoulders in vertebrates. The scientists believe that instead of groups of stem cells creating the skeletal and muscle structure separately they actually appear to make them together as a sort of ‘composite’. This could have significant implications for clinical medicine and our understanding of vertebrate evolution.

Scientists at the Wolfson Institute for Biomedical Research of University College London, part-funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and working with international collaborators, used a new genetic technique to tag embryonic stem cells and then trace them to the adult animal. They discovered that instead of homogeneous groups of stem cells making up the bones of the shoulder and neck and another making the muscles, a newly-discovered group of stem cells called mesenchymal stem cells make both the muscles and the point where it joins the skeleton.

The researchers believe their results show that the skeleton and muscles of vertebrates should not be seen as separate but instead are composites, with the boundaries between cell groups blurred around the body. For example, the stem cell group that makes the connective tissues of the swallowing/gulping muscles also makes the skeletal regions of the shoulder girdle. This sheds new light on human diseases such as Klippel-Feil syndrome where both regions are often malformed.

Dr Georgy Koentges, one of the lead researchers at UCL, said, “Anatomists and everyone else would look at the skeleton and assume that the bone structures are uniform and are the basic components of vertebrate organisation. Our research suggests this is wrong and actually groups of stem cells create not only the muscles of the neck and shoulder but also the skeletal structure where these muscles are attached. These groups of stem cells are making scaffolds of connections early during embryonic development which are later embellished and filled by other cells: just like the scaffold of a house which is later filled in by bricks, mortar and windows. If cells are from the same stem cell origin they ‘stick together’ throughout their life – normally without us noticing it.”

As the joining points between muscles and bones have survived unaltered across hundreds of millions of year researchers can also start to map cell territories into fossils. For the first time the research team have been able to trace what happened to a major shoulder bone that features in many extinct land animals. They found that it appears to survive in modern vertebrates as the scapular spine.

Dr Koentges commented, “Now that we have identified these key players in forming the neck and the shoulders we can start looking for the genes that are on in these stem cells and which are ultimately responsible for evolutionary changes over millions of years and are also behind a number of serious human illnesses. This is an active area of research that we are involved in.”

Media Contact

Matt Goode alfa

More Information:

http://www.bbsrc.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors