Researchers find missing genes of ancient organism

Yale scientists report in the journal Nature that the “missing” genes for tRNA in an ancient parasite are made up by splicing together sequences in distant parts of the DNA genome.


The research led by Professor Dieter Söll in the Department of Molecular Biophysics and Biochemistry at Yale focuses on the most ancient organism with a known genome sequence. Nanoarchaeum equitans, is a member of a new phylogenetic kingdom in the Archaea containing organisms that are primitive, parasitic and extremophile, or notable for living in the most extreme environments.

Surprisingly, Söll’s team found that, although the genome of Nanoarchaeum lacks several intact tRNA genes, functional forms of those tRNAs can be made by copying from two distant DNA sequences — and joining them.

The regions on the separate pieces, that allow them to find each other and splice, are somewhat similar to internal sequences found in tRNA genes of more complex organisms., These regions, termed introns, are sequences that are cut out of whole gene transcripts during the process of tRNA maturation. The known tRNA introns in organisms like yeast, however, appear to have no function. Therefore, modern tRNA introns might be remnants of an old essential process of tRNA biosynthesis.

“These results may point to extremophiles in the kingdom of Archaea as predecessors of more modern organisms that have gained a genetic load in the process of evolution,” said Söll. “Or they may represent a specialization that has rid itself of genetic baggage to exist in extreme environments.”

Understanding how primitive organisms like Nanoarchaea operate gives clues to — but not proof of — the relationship between modern and ancient organisms.

Media Contact

Janet Rettig Emanuel EurekAlert!

More Information:

http://www.yale.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors