Mapping the evolution of a virus

A University of California scientist working at Los Alamos National Laboratory with collaborators from the University of Cambridge (England) and the World Health Organization National Influenza Center at Erasmus Medical Center, (Rotterdam, Netherlands) have developed a computer modeling method for mapping the evolution of the influenza virus. The method could soon help medical researchers worldwide develop a better understanding of certain mutations in influenza and other viruses that allow diseases to dodge the human immune system.

In a paper published in today’s edition of the journal Science, the team of scientists from the United States and Europe describe their work quantifying and visualizing the antigenic and genetic evolution of the influenza A (H3N2) virus from its initial introduction into humans in 1968 up to 2003. The study resulted in a map that shows the virus evolved as a series of 11 closely related virus clusters as it has sought to elude human immunity over the decades.

The mapping method will allow researchers involved in vaccine development and viral surveillance programs for influenza, and potentially for other pathogens such as Hepatitis C and HIV as well, to quantify and visualize the evolution of these viruses. It can assist in monitoring antigenic differences among vaccine and circulating viral strains, and can help in quantifying the effects of vaccination. The approach also offers a route for predicting the relative infection success of emerging virus strains.

According to Los Alamos computational biologist Alan Lapedes, “This collaboration was particularly exciting because it involved close interaction between experts in computation and virology and medicine. Once we had created the map, we tested its reliability by making hundreds of predictions of how well certain strains might match up and then conducting laboratory tests to check the predictions. It’s very gratifying that this basic research also has practical application to an important human pathogen, influenza.”

Experts estimate that influenza epidemics cause an estimated 500,000 human deaths worldwide each year. Although antibodies provide protective immunity to influenza virus infection, the antigenic structure of proteins that stimulate immune responses changes significantly over time, a process known as antigenic drift, so in most years the influenza vaccine has to be updated to ensure sufficient efficacy against newly emerging variants.

In addition to Lapedes, the team members included Derek Smith from the University of Cambridge, and Ron Fouchi and his colleagues Jan de Jong, Theo Bestebroer, Guus Rimmelzwaan and Albert Osterhaus from National Influenza Center at Erasmus Medical Center.

Media Contact

Todd Hanson EurekAlert!

Weitere Informationen:

http://www.lanl.gov

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

How Stable is the Antarctic Ice Sheet?

Scientists from Heidelberg University investigate which factors determine the stability of ice masses in East Antarctica. As temperatures rise due to climate change, the melting of polar ice sheets is…

Smart sensors for future fast charging batteries

European project “Spartacus” launched Faster charging, longer stability of performance not only for electric vehicles but also for smartphones and other battery powered products. What still sounds like science fiction…

Small molecules control bacterial resistance to antibiotics

Antibiotics have revolutionized medicine by providing effective treatments for infectious diseases such as cholera. But the pathogens that cause disease are increasingly developing resistance to the antibiotics that are most…

Partners

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close