Emory scientists use enzymes to enhance regeneration of damaged peripheral nerves in mice

Scientists at Emory University School of Medicine were able to enhance significantly the re-growth of damaged peripheral nerves in mice by treating them with enzymes that counteracted a growth-blocking mechanism. The research offers the potential for improving functional recovery after peripheral nerve injuries. The Emory scientists were led by Arthur English, PhD, professor of cell biology, with faculty colleagues Robert McKeon, PhD and Erica Werner, PhD and former Emory student M.L. Groves. Results of the research will be presented at the annual meeting of the Society for Neuroscience on November 8 in New Orleans.

Peripheral nerves extend from the spinal cord to targets in the periphery such as muscle and skin. Individual peripheral nerves contain thousands of individual fibers, called axons, which project to specific targets. When a peripheral nerve is damaged, axons between the injury site and muscle or skin degenerate and function is lost. Although peripheral nerve axons are capable of regenerating after such injuries, in humans this regeneration is modest at best and there currently is no effective clinical treatment.

One reason peripheral nerves do not regenerate well is the presence of growth inhibitory substances, called proteoglycans, within the environment of the damaged nerve. In an effort to improve the ability of axons to regenerate, the Emory scientists attempted to modify this inhibitory environment following peripheral nerve injury in mice. They treated the peripheral portion of severed nerves with each of three enzymes that degrade specific types of proteoglycans.

During the first two weeks after the injury, axons regenerated through enzyme-treated tissues much more effectively than through untreated tissues. Not only did the axons regenerate, those that did extended more than twice as far.

“This study shows that treatment with enzymes that degrade proteoglycans offers the potential to enhance regeneration, and may lead to improved recovery of function after peripheral nerve injuries,” says Dr. English.

Media Contact

Holly Korschun EurekAlert!

More Information:

http://www.emory.edu/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors