Genome Sequence of Bread Mold Revealed by International Scientific Team, Including Hebrew University Researcher

The genome sequence of the bread mold Neurospora crassa has been revealed by a group of 77 researchers from seven nations, among them Prof. Oded Yarden of the Hebrew University of Jerusalem Faculty of Agricultural, Food and Environmental Quality Sciences.

The achievement, reported in the current issue of Nature magazine, represents a further stage in the history of research on this fungus. A half-century ago, George W. Beadle and Edward L. Tatum won a Nobel Prize for their work on Neurospora, which demonstrated for the first time that specific genes, as units of heredity, also encode the specific proteins that carry out much of the work of the cell.

“This first decoding of the Neurospora genome constitutes a breakthrough in the deeper understanding of the genetic base of this representative of the fungal kingdom. There are consequences as well for other life forms, including that of man,” said Prof. Yarden.

Many of the basic cell processes of fungi are identical to those which take place in animals and humans, a fact which makes it possible to advance research in those life forms. Additionally, it is known that there is a significant number of genes in Neurospora which correspond to human genes. “The ease and speed with which we can conduct experimental work with this fungus will spur research on other genetic frameworks, leading to progress in developing future genetic-based medical treatment,” said Prof. Yarden.

The researchers found that Neurospora has around 10,000 genes – about double that found in bacteria — as compared to some 14,000 in fruitflies and 21,000-39,0000 in humans. This means that humans are not that far in genetic complexity from the common bread mold.

A point of interest revealed by the scientists is that some 40% of the genes in the Neurospora fungus do not have equivalence in any other organisms. It is possible that future research regarding these genes could lead to development of anti-fungal materials with applications in agriculture and elsewhere, said Prof. Yarden. Genetic engineering techniques could be applied to specific genes, for example, in order to yield improved or new natural materials which could be used in antibiotic medications.

According to Prof. Yarden, there are more than a million types of fungi, found everywhere that life exists. There are those which cause diseases in humans, animals and plants as well as those which are poisonous and which can even be used to create biological weapons. On the other hand, there are many “positive” fungi as well, including those used in creating antibiotics. And there are fungi which function as “factories” for the creation of proteins used in industry, such as in laundry soaps and food products.

A point revealed by the research group is that Neurospora has a number of highly efficient defensive mechanisms which protect it against “foreign” elements, such as viruses or other foreign DNA. A surprise finding in the research was that the Neurospora, which is not a disease-causing fungus, has many genes which are identical to those found in fungi which are parasitical and disease-causing, a fact which poses several questions about the evolution of fungi exhibiting different lifestyles.

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University of Jerusalem, 02-5882904; Orit Suliltzeanu, spokesperson, 052-608016

Media Contact

Jerry Barach Hebrew University

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors