How Roots Find A Route

“The key is in the fuzzy coat of hairs on the roots of plants” says Professor Liam Dolan. “We have identified a growth control mechanism that enables these hairs to find their way and to elongate when their path is clear”.

Root hairs explore the soil in much the same way as a person would feel their way in the dark. If they come across an obstacle, they feel their way around until they can continue growing in an opening. In the meantime, the plant is held in place as the hairs grip the soil.

This ability is governed by a self-reinforcing cycle. A protein at the tip of root hairs called RHD2 produces free radicals that stimulate the uptake of calcium from the soil. Calcium then stimulates the activity of RHD2, producing more free radicals and further uptake of calcium. When an obstacle blocks the hair’s path, the cycle is broken and growth starts in another location and direction.

“This remarkable system gives plants the flexibility to explore a complex environment and to colonise even the most unpromising soils”, says Professor Dolan.

“It also explains how seedlings are able to grow so quickly once they have established”.

In nutrient poor soils such as in parts of Australia and sub-Saharan Africa, plants have adapted by producing more root hairs. A better understanding of this adaptation will allow the development of crops able to grow in inhospitable environments.

This research was funded by the BBSRC, a Marie Curie International Incoming Fellowship and MEXT of Japan.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors