New study shows that bacteria can communicate through the air

This month, Journal of Applied Microbiology publishes a ground-breaking study demonstrating that bacteria which are physically separated can transmit information through the air. It is well documented that bacteria can exchange messages by releasing substances into a surrounding liquid culture medium, but this new study is the first to demonstrate signalling between physically separated bacterial cells.

Professor Alan Parsons and Dr Richard Heal of QinetiQ ltd, have shown that physically separated colonies of bacteria can transmit signals conferring resistance to commonly used antibiotics. The discovery is thought to have direct application against the growing problem of the resistance of bacteria to antibiotics – in particular in preventing the growth of biofilms, which often cause infection associated with surgical implants.

Professor Parsons and Dr Heal conducted their experiments using a Petri dish divided into two compartments, connected by a five-millimetre air gap between the top of the wall and the lid. In one compartment they placed drops of the bacterium Escherichia coli, together with the antibiotics. When the other compartment was empty, the bacteria were killed. However, if thriving colonies of E.coli were placed in the other compartment, the first colony of bacteria not only survived, but also multiplied. Yet, if the gap between the compartments was sealed, the bacteria in the first compartment died. Professor Parsons and Dr Heal concluded that the bacteria must have been responding to some kind of airborne signal from the adjacent culture probably in the form of a volatile chemical.

Further research is still required to identify the exact nature of the signalling mechanism, and to establish whether blocking of the signalling mechanism might prove a valuable weapon in combatting the problem of bacterial antibiotic resistance.

Media Contact

Anna Van Opstal alphagalileo

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Cyanobacteria: Small Candidates …

… as Great Hopes for Medicine and Biotechnology In the coming years, scientists at the Chair of Technical Biochemistry at TU Dresden will work on the genomic investigation of previously…

Do the twist: Making two-dimensional quantum materials using curved surfaces

Scientists at the University of Wisconsin-Madison have discovered a way to control the growth of twisting, microscopic spirals of materials just one atom thick. The continuously twisting stacks of two-dimensional…

Big-hearted corvids

Social life as a driving factor of birds’ generosity. Ravens, crows, magpies and their relatives are known for their exceptional intelligence, which allows them to solve complex problems, use tools…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close