Queen's University scientists discover new method for studying molecules

Biological molecules make up all living creatures on earth and contain four major elements – hydrogen, carbon, nitrogen and oxygen. But until now scientists were only able to use nuclear magnetic resonance (NMR) to study three out of the four elements in the molecule puzzle because oxygen wavelengths were difficult to detect.

“Oxygen signals were so weak, so to speak, that no one could make use of them,” says chemistry professor Gang Wu. “Now there is a way of detecting them even in complex biomolecular systems.”

Dr. Wu and his colleagues used one of the strongest NMR spectrometers in the world, located at the National Ultrahigh-Field NMR Facility for Solids in Ottawa, to create a magnetic field in which oxygen's wavelength could be detected. They also enriched the oxygen in the molecule using isotope enrichment, and implemented new NMR techniques to boost the sensitivity for detecting weak signals.

The result is an amplified oxygen wavelength that can be studied. Scientists can now examine all four major elements and learn more about the chemical structure and interaction of large molecules.

Dr. Wu's colleagues include lead author and Queen's post-doctoral fellow Jianfeng Zhu, Eric Ye (University of Ottawa) and Victor Terskikh (NRC Steacie Institute for Molecular Sciences).

The findings were recently featured as a cover article in Angewandte Chemie, one of the world's leading chemistry journals.

Media Contact

Kristyn Wallace EurekAlert!

More Information:

http://www.queensu.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors