Olfactory bulb glial cell transplant preserves muscles in paraplegic rats

Spinal chord injuries represent a serious and irreversible handicap that is sadly frequent in our society. Because of the permanent break in the nervous connections between the brain and the organs and muscles, such injuries impair their movement inducing atrophy and deterioration while they disturb organic functions.

The pioneering studies carried out by Santiago Ramón y Cajal established that while nerve cells from the peripheral nervous system (PNS) have the capacity to repair themselves, the same does not apply to adult brain cells and spinal cord cells from the central nervous system (CNS). The difference is not in the nerve cells themselves but in the cellular enviroment that gives them support – the glial cells. These cells are involved in the transmision of nerve impulses and produce myelin. Schwann cells (a variety of glial cell) in the peripheral nervous system (PNS) provide factors that contribute to the regeneration of the axons whereas the glia of the CNS do not have such a nurturing role. For this reason, one of the strategic experimental approaches for the regeneration of spinal chord neurons consists in altering their cellular enviroment by introducing cells that create a supportive environment for axon regeneration in the damaged area. The glial cells that surround the axons in the olfactory bulb (OBG) are a promising example because they promote axon regeneration in the CNS.

In an experiment using paraplegic rats, it was found that 8 months after a transplant treatment in a transected spinal chord using OBS, axon regeneration was taking place and sensorial and motor recovery was perceived in behavioural tests. The investigation recently published in the Journal of Physiology (London) [J Physiol 586.10 (2008) pp 2593–2610], with the collaboration of scientists from the “Centro de Biología Molecular Severo Ochoa” (CSIC-UAM), Córdoba University, and the “Instituto de Biomedicina de Valencia” (CSIC), has analysed for the first time the muscular characteristics of paraplegic animals treated with an OBG transplant and compared them with those of untreated paraplegic animals and healthy control animals.

The study exhibits a high correlation between the functional capability shown by the animals in behavioural tests and some biochemical parameters. The parameters measured differentiate the muscular characteristics of paraplegic and healthy animals and they established that animals treated with the transplant had more similar characteristics to the healthy animals than the untreated paraplegic animals. In spite of the global effect of OBG transplants, only 3 of the 9 treated animals (and none of the untreated) showed near normal muscle characteristics. This could imply that maintaining the muscular phenotype might rely on the interaction between the transplanted cells and other factors.

One the possible factors that affect the result could be the physical exercise to which the animals were subjected. This could be significant since it is well known that rehabilitation treatment aids regenerative therapies. Both voluntary and assisted exercise stimulates synaptic plasticity and the regenerative capabilities of neurons of the CNS as well as re-establishes adequate trophic factors. The role of the OBG in establishing a nurturing cellular environment for axon regeneration could induce adaptation in the local spinal circuits that favours the conservation of muscular properties and automatic contractions even while the damaged neural pathways are not fully recovered.

Media Contact

Oficina de Cultura Científica alfa

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Argonne targets lithium-rich materials as key to more sustainable cost-effective batteries

Next-generation batteries using lithium-rich materials could be more sustainable and cost-effective, according to a team of researchers with the U.S. Department of Energy’s (DOE) Argonne National Laboratory. The pivotal discovery,…

Why disordered light-harvesting systems produce ordered outcomes

Scientists typically prefer to work with ordered systems. However, a diverse team of physicists and biophysicists from the University of Groningen found that individual light-harvesting nanotubes with disordered molecular structures…

RadarGlass – from vehicle headlight to radar transceiver

As a result of modern Advanced Driver Assistance Systems, the use of radar technology has become indispensable for the automotive sector. With the installation of a large and growing number…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close