Knitting electronics with yarn batteries

Pieces of flexible, rechargeable yarn batteries can be connected in series to power electroluminescent panel displays. Credit: American Chemical Society

Most people are familiar with smartwatches, but for wearable electronics to progress, scientists will need to overcome the challenge of creating a device that is deformable, durable, versatile and wearable while still holding and maintaining a charge.

One dimensional fiber or yarn has shown promise, since it is tiny, flexible and lightweight. Previous studies have had some success combining one-dimensional fibers with flexible Zn-MnO2 batteries, but many of these lose charge capacity and are not rechargeable. So, Chunyi Zhi and colleagues wanted to develop a rechargeable yarn zinc-ion battery that would maintain its charge capacity, while being waterproof and flexible.

The group twisted carbon nanotube fibers into a yarn, then coated one piece of yarn with zinc to form an anode, and another with magnesium oxide to form a cathode. These two pieces were then twisted like a double helix and coated with a polyacrylamide electrolyte and encased in silicone.

Upon testing, the yarn zinc-ion battery was stable, had a high charge capacity and was rechargeable and waterproof. In addition, the material could be knitted and stretched. It also could be cut into several pieces, each of which could power a watch. In a proof-of-concept demonstration, eight pieces of the cut yarn battery were woven into a long piece that could power a belt containing 100 light emitting diodes (known as LEDs) and an electroluminescent panel.

###

The authors acknowledge funding from the National Natural Science Foundation of China and the Research Grants Council of Hong Kong Joint Research Scheme, City University of Hong Kong and the Sichuan Provincial Department of Science & Technology.

The paper's abstract will be available on March 28 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acsnano.7b09003

The American Chemical Society is a not-for-profit organization chartered by the U.S. Congress. ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org

Media Contact

Katie Cottingham
k_cottingham@acs.org
301-775-8455

 @ACSpressroom

http://www.acs.org

Media Contact

Katie Cottingham EurekAlert!

All news from this category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

ETRI develops a haptic film activated by LEDs

LED-based film-type haptic technology implements localized vibration. Various tactile sensations are now possible via independantly controllable vibrations. A Korean research team succeeded in developing a technology generating various vibration using…

A Novel Tunable Force in Electrolyte Solutions

Solutions that conduct electricity, ‘electrolytes’, are ubiquitous not only in batteries and capacitors but also in biofluids including blood plasma; of great practical importance is thus to understand how electrolytes…

Quantum boost for a classical cooling technology

New material improves magnetic cooling near absolute zero … Cooling is a long-standing technological challenge. Standard cooling cycle based on vapor compression exploits expensive helium gas to reach temperatures near…

Partners & Sponsors