Genetic survey sheds light on Oceans' lean, mean microbial machines: UBC research
The findings, published this week in the Proceedings of the National Academy of Sciences, is the first direct evidence of widespread genome reduction–organisms evolving to cast off superfluous genes and traits in favor of simpler, specialized genetic make-ups optimized for rapid growth.
“Microbes are the dominant form of life on the planet and comprise a huge proportion of the oceans' biomass, but we know next to nothing about how populations exist, evolve and interact outside of the lab,” says UBC microbiologist Steven Hallam, Canada Research Chair in Environmental Genomics and author on the paper.
“This widespread, signal cell genome sequencing of marine bacteria in the surface ocean has uncovered a surprising amount of metabolic specialization. This tendency toward genome reduction has profound implications for how microbial communities develop metabolic interactions that couple nutrient and energy flow patterns in the ocean. It could be a matter of survival of the most connected.”
Says Ramunas Stepanauskas, director of the Bigelow Single Cell Genomics Centre and the paper's lead author: “We found that natural bacterioplankton are devoid of 'genomic pork' such as gene duplications and noncoding nucleotides, and utilize more diverse energy sources than previously thought.”
Samples of planktonic bacteria were targeted from the Gulf of Maine, the Mediterranean, the South Atlantic and other sites. Data from northeast subarctic Pacific samples–taken over a six year period from the waters between Saanich Inlet and Ocean Station Papa along the Department of Fisheries and Oceans Line P transect was provided by Hallam's team.
Almost 20 researchers from Canada, the United States, Europe and Australia took part in the study, led by researchers at the Bigelow Laboratory for Ocean Sciences on the Gulf of Maine. Hallam's research is supported by the Tula Foundation, and by the Canadian Institute for Advanced Research.
Photo Gallery Available
http://www.flickr.com/photos/ubcscience/sets/72157634234485723/
Water and microbial samples being collected by UBC researchers along Line P, a 1,425 kilometer (885 mile) survey line in the Northeast subarctic Pacific Ocean, originating in the coastal fjord Saanich Inlet, British Columbia and terminating at Ocean Station Papa on the southeast edge of the Alaskan Gyre. For over 50 years, hydrographic data have been collected along Line P, making it one of the longest running time-series in the global ocean. Credits: Jody Wright, Kendra Moss (Hallam Lab, University of British Columbia).
Media Contact
More Information:
http://www.ubc.caAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles

High BTMPS Levels Found in Fentanyl: What It Means for Safety
A UCLA research team has found that drugs being sold as fentanyl contain high amounts of the industrial chemical bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, or BTMPS. This new substance of concern emerged in…

Gas Adsorption Insights on Platinum and Gold Nanotunnels
Understanding gas diffusion in nanoscale voids key to new gas technologies Tokyo, Japan – Researchers from Tokyo Metropolitan University have elucidated how hydrogen and carbon monoxide is adsorbed into solids…

Pandemic Resilience: How Playfulness Boosted Well-Being
Adults with high levels of playfulness showed strong resilience during the COVID-19 pandemic compared to less playful individuals, new research shows. The study led by Xiangyou “Sharon” Shen of Oregon…